論文の概要: Learning Swarm Interaction Dynamics from Density Evolution
- arxiv url: http://arxiv.org/abs/2112.02675v1
- Date: Sun, 5 Dec 2021 20:18:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-08 09:42:25.448266
- Title: Learning Swarm Interaction Dynamics from Density Evolution
- Title(参考訳): 密度進化から群相互作用のダイナミクスを学ぶ
- Authors: Christos Mavridis, Amoolya Tirumalai, John Baras
- Abstract要約: 生物群や人工群集の協調運動を理解することの問題点を考察する。
本稿では,2対の相互作用に基づくスワムの力学をCucker-Smale flockingモデルに基づいて記述する。
我々は,Swarmの密度進化の観測から相互作用するエージェントのダイナミクスを学習するために,拡張システムを反復最適化スキームに組み込む。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of understanding the coordinated movements of
biological or artificial swarms. In this regard, we propose a learning scheme
to estimate the coordination laws of the interacting agents from observations
of the swarm's density over time. We describe the dynamics of the swarm based
on pairwise interactions according to a Cucker-Smale flocking model, and
express the swarm's density evolution as the solution to a system of mean-field
hydrodynamic equations. We propose a new family of parametric functions to
model the pairwise interactions, which allows for the mean-field macroscopic
system of integro-differential equations to be efficiently solved as an
augmented system of PDEs. Finally, we incorporate the augmented system in an
iterative optimization scheme to learn the dynamics of the interacting agents
from observations of the swarm's density evolution over time. The results of
this work can offer an alternative approach to study how animal flocks
coordinate, create new control schemes for large networked systems, and serve
as a central part of defense mechanisms against adversarial drone attacks.
- Abstract(参考訳): 生物群や人工群集の協調運動を理解することの問題点を考察する。
本研究では,Swarmの密度を時間とともに観測し,相互作用するエージェントの協調法則を推定する学習手法を提案する。
本研究では,カッカー・スモール群集モデルに基づく対方向相互作用に基づく群集の動力学を記述し,群集の密度発展を平均場流体力学方程式の系に対する解として表現する。
積分微分方程式の平均場マクロ系をPDEの強化系として効率的に解けるように、ペアワイズ相互作用をモデル化するための新しいパラメトリック関数群を提案する。
最後に,Swarmの密度変化の時間的観測から相互作用するエージェントのダイナミクスを学習するために,拡張システムを反復最適化スキームに組み込む。
この研究の結果は、動物の群れの協調方法の研究、大規模なネットワークシステムのための新しい制御スキームの作成、および敵のドローン攻撃に対する防御機構の中心的な役割を担っている。
関連論文リスト
- Integrating GNN and Neural ODEs for Estimating Non-Reciprocal Two-Body Interactions in Mixed-Species Collective Motion [0.0]
本稿では,観測軌道から基礎となる運動方程式を推定するための新しいディープラーニングフレームワークを提案する。
本フレームワークは,グラフニューラルネットワークとニューラルディファレンシャル方程式を統合し,二体相互作用の効果的な予測を可能にする。
論文 参考訳(メタデータ) (2024-05-26T09:47:17Z) - Causal Graph ODE: Continuous Treatment Effect Modeling in Multi-agent
Dynamical Systems [70.84976977950075]
実世界のマルチエージェントシステムは、しばしば動的で連続的であり、エージェントは時間とともにその軌道や相互作用を共進化させ、変化させる。
本稿では,グラフニューラルネットワーク(GNN)をODE関数として,エージェント間の連続的な相互作用をキャプチャする新しいモデルを提案する。
我々のモデルの主な革新は、治療の時間依存表現を学習し、ODE関数にそれらを組み込むことで、潜在的な結果の正確な予測を可能にすることである。
論文 参考訳(メタデータ) (2024-02-29T23:07:07Z) - Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation [50.01551945190676]
社会ロボットナビゲーションは、日常生活の様々な状況において有用であるが、安全な人間とロボットの相互作用と効率的な軌道計画が必要である。
本稿では, 動的に進化する関係構造を明示的に推論した系統的関係推論手法を提案する。
マルチエージェント軌道予測とソーシャルロボットナビゲーションの有効性を実証する。
論文 参考訳(メタデータ) (2024-01-22T18:58:22Z) - Inferring Relational Potentials in Interacting Systems [56.498417950856904]
このような相互作用を発見する代替手法として、ニューラル・インタラクション・推論(NIIP)を提案する。
NIIPは観測された関係制約を尊重する軌道のサブセットに低エネルギーを割り当てる。
別々に訓練されたモデル間での相互作用の型を交換するなどの軌道操作や、軌道予測を可能にする。
論文 参考訳(メタデータ) (2023-10-23T00:44:17Z) - Decentralized Adversarial Training over Graphs [55.28669771020857]
機械学習モデルの敵攻撃に対する脆弱性は、近年、かなりの注目を集めている。
この研究は、個々のエージェントが様々な強度摂動空間に従属するグラフ上の敵の訓練を研究する。
論文 参考訳(メタデータ) (2023-03-23T15:05:16Z) - Random Feature Models for Learning Interacting Dynamical Systems [2.563639452716634]
エージェントの経路のノイズ観測から直接相互作用力のデータに基づく近似を構築することの問題点を考察する。
学習された相互作用カーネルは、長い時間間隔でエージェントの振る舞いを予測するために使用される。
さらに,カーネル評価コストを削減し,マルチエージェントシステムのシミュレーションコストを大幅に削減する。
論文 参考訳(メタデータ) (2022-12-11T20:09:36Z) - Learning Interaction Variables and Kernels from Observations of
Agent-Based Systems [14.240266845551488]
本稿では,エージェントの軌道に沿った状態や速度の観測を前提として,相互作用カーネルが依存する変数と相互作用カーネル自体を両立させる学習手法を提案する。
これにより、高次元観測データから次元性の呪いを避ける効果的な次元削減が得られる。
我々は,本手法の学習能力を,様々な一階対話システムに示す。
論文 参考訳(メタデータ) (2022-08-04T16:31:01Z) - Learning Anisotropic Interaction Rules from Individual Trajectories in a
Heterogeneous Cellular Population [0.0]
細胞群集の運動をモデル化するための第2次IPSのためのWSINDyを開発する。
本手法は,異種細胞集団の動態を規定する相互作用規則を学習する。
本研究では, 一般的な細胞移動実験を動機とした, いくつかのテストシナリオにおいて, 提案手法の有効性と性能を実証する。
論文 参考訳(メタデータ) (2022-04-29T15:00:21Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
サブグループフィードバックを取り入れた新しいGPレグレッションを導入する。
我々の修正された回帰は、以前のアプローチと比べて、明らかにばらつきを減らし、したがってより正確な後続を減らした。
我々は2つの異なる社会問題に対してアルゴリズムを実行する。
論文 参考訳(メタデータ) (2021-07-07T03:57:22Z) - GEM: Group Enhanced Model for Learning Dynamical Control Systems [78.56159072162103]
サンプルベースの学習が可能な効果的なダイナミクスモデルを構築します。
リー代数ベクトル空間上のダイナミクスの学習は、直接状態遷移モデルを学ぶよりも効果的であることを示す。
この研究は、ダイナミクスの学習とリー群の性質の関連性を明らかにし、新たな研究の方向への扉を開く。
論文 参考訳(メタデータ) (2021-04-07T01:08:18Z) - Planning from Images with Deep Latent Gaussian Process Dynamics [2.924868086534434]
計画は既知の環境力学の問題を制御するための強力なアプローチである。
未知の環境では、エージェントは計画を適用するためにシステムダイナミクスのモデルを学ぶ必要がある。
本稿では,環境と視覚的相互作用から低次元システムダイナミクスを学習する,遅延ガウス過程力学(DLGPD)モデルを提案する。
論文 参考訳(メタデータ) (2020-05-07T21:29:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。