論文の概要: Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation
- arxiv url: http://arxiv.org/abs/2401.12275v2
- Date: Mon, 11 Nov 2024 18:59:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:19:14.196189
- Title: Multi-Agent Dynamic Relational Reasoning for Social Robot Navigation
- Title(参考訳): ソーシャルロボットナビゲーションのためのマルチエージェント動的リレーショナル推論
- Authors: Jiachen Li, Chuanbo Hua, Jianpeng Yao, Hengbo Ma, Jinkyoo Park, Victoria Dax, Mykel J. Kochenderfer,
- Abstract要約: 社会ロボットナビゲーションは、日常生活の様々な状況において有用であるが、安全な人間とロボットの相互作用と効率的な軌道計画が必要である。
本稿では, 動的に進化する関係構造を明示的に推論した系統的関係推論手法を提案する。
マルチエージェント軌道予測とソーシャルロボットナビゲーションの有効性を実証する。
- 参考スコア(独自算出の注目度): 50.01551945190676
- License:
- Abstract: Social robot navigation can be helpful in various contexts of daily life but requires safe human-robot interactions and efficient trajectory planning. While modeling pairwise relations has been widely studied in multi-agent interacting systems, the ability to capture larger-scale group-wise activities is limited. In this paper, we propose a systematic relational reasoning approach with explicit inference of the underlying dynamically evolving relational structures, and we demonstrate its effectiveness for multi-agent trajectory prediction and social robot navigation. In addition to the edges between pairs of nodes (i.e., agents), we propose to infer hyperedges that adaptively connect multiple nodes to enable group-wise reasoning in an unsupervised manner. Our approach infers dynamically evolving relation graphs and hypergraphs to capture the evolution of relations, which the trajectory predictor employs to generate future states. Meanwhile, we propose to regularize the sharpness and sparsity of the learned relations and the smoothness of the relation evolution, which proves to enhance training stability and model performance. The proposed approach is validated on synthetic crowd simulations and real-world benchmark datasets. Experiments demonstrate that the approach infers reasonable relations and achieves state-of-the-art prediction performance. In addition, we present a deep reinforcement learning (DRL) framework for social robot navigation, which incorporates relational reasoning and trajectory prediction systematically. In a group-based crowd simulation, our method outperforms the strongest baseline by a significant margin in terms of safety, efficiency, and social compliance in dense, interactive scenarios. We also demonstrate the practical applicability of our method with real-world robot experiments. The code and videos can be found at https://relational-reasoning-nav.github.io/.
- Abstract(参考訳): 社会ロボットナビゲーションは、日常生活の様々な状況において有用であるが、安全な人間とロボットの相互作用と効率的な軌道計画が必要である。
ペアワイズ関係のモデリングはマルチエージェントインタラクションシステムで広く研究されているが、大規模なグループワイズ活動を捉える能力は限られている。
本稿では,動的に進化するリレーショナル構造を明示的に推論した系統的リレーショナル推論手法を提案し,マルチエージェント軌道予測とソーシャルロボットナビゲーションの有効性を実証する。
複数ノード間のエッジ(エージェント)に加えて、複数のノードを適応的に接続し、教師なしの方法でグループワイズ推論を可能にするハイパーエッジを推論することを提案する。
提案手法は,軌道予測器が将来の状態を生成するために使用する関係の進化を捉えるために,動的に進化する関係グラフとハイパーグラフを推論する。
一方,学習した関係の鋭さと疎さ,および関係進化の滑らかさを規則化し,学習安定性とモデル性能を向上させることを提案する。
提案手法は,合成クラウドシミュレーションと実世界のベンチマークデータセットで検証される。
実験により、この手法は妥当な関係を推測し、最先端の予測性能を達成することを示した。
さらに,リレーショナル推論と軌道予測を体系的に組み込んだソーシャルロボットナビゲーションのための深層強化学習(DRL)フレームワークを提案する。
本手法は,群集シミュレーションにおいて,高密度で対話的なシナリオにおいて,安全性,効率,社会的コンプライアンスの面で,最強の基準を達成している。
また,本手法の実際のロボット実験への適用性を実証した。
コードとビデオはhttps://relational-reasoning-nav.github.io/で見ることができる。
関連論文リスト
- Neural Interaction Energy for Multi-Agent Trajectory Prediction [55.098754835213995]
ニューラル・インタラクション・エナジー(MATE)によるマルチエージェント軌道予測(Multi-Agent Trajectory Prediction)というフレームワークを導入する。
MATEは神経相互作用エネルギーを用いてエージェントの対話運動を評価する。
時間的安定性を高めるために,エージェント間相互作用制約とエージェント内動作制約という2つの制約を導入する。
論文 参考訳(メタデータ) (2024-04-25T12:47:47Z) - Disentangled Neural Relational Inference for Interpretable Motion
Prediction [38.40799770648501]
グラフベース表現と時系列モデルを統合した変分自動エンコーダフレームワークを開発した。
本モデルでは,対話を特徴付ける解釈可能なエッジ特徴を付加した動的相互作用グラフを推論する。
シミュレーションと実世界の両方のデータセットに関する広範な実験を通じて、我々のアプローチを検証する。
論文 参考訳(メタデータ) (2024-01-07T22:49:24Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
本稿では,関係時間的推論を伴う3つの補助的タスクを提案し,それらを標準のディープラーニングフレームワークに統合する。
これらの補助的なタスクは、他の対話的エージェントの行動パターンを推測するための追加の監視信号を提供する。
提案手法は,標準評価指標の観点から,頑健かつ最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-11-27T18:57:42Z) - EvolveHypergraph: Group-Aware Dynamic Relational Reasoning for
Trajectory Prediction [39.66755326557846]
本稿では,動的に進化する関係構造を明示的に推論したグループ認識型関係推論手法(Hypergraph)を提案する。
提案手法は, 説明可能な, 合理的なグループ認識関係を推定し, 長期予測における最先端性能を実現する。
論文 参考訳(メタデータ) (2022-08-10T17:57:10Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
マルチエージェント模倣学習は、観察と行動のマッピングを学習することで、デモからタスクを実行するために複数のエージェントを訓練することを目的としている。
本稿では,確率変数間の依存を捉える強力な統計ツールである copula を用いて,マルチエージェントシステムにおける相関関係と協調関係を明示的にモデル化する。
提案モデルでは,各エージェントの局所的行動パターンと,エージェント間の依存構造のみをフルにキャプチャするコプラ関数を別々に学習することができる。
論文 参考訳(メタデータ) (2021-07-10T03:49:41Z) - Leveraging Neural Network Gradients within Trajectory Optimization for
Proactive Human-Robot Interactions [32.57882479132015]
本稿では, トラジェクトリ最適化(TO)の解釈可能性と柔軟性を, 最先端の人間のトラジェクトリ予測モデルの予測能力と融合する枠組みを提案する。
我々は,最大10人の歩行者の群集を安全に効率的に移動させるロボットを必要とするマルチエージェントシナリオにおいて,我々のアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-12-02T08:43:36Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
本稿では,リスクに敏感な最適制御に基づく安全な群集ロボットインタラクションのためのオンラインフレームワークを提案し,そのリスクをエントロピーリスク尺度でモデル化する。
私たちのモジュラーアプローチは、クラウドとロボットの相互作用を学習ベースの予測とモデルベースの制御に分離します。
シミュレーション研究と実世界の実験により、このフレームワークは、現場にいる50人以上の人間との衝突を避けながら、安全で効率的なナビゲーションを実現することができることが示された。
論文 参考訳(メタデータ) (2020-09-12T02:02:52Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z) - EvolveGraph: Multi-Agent Trajectory Prediction with Dynamic Relational
Reasoning [41.42230144157259]
本稿では,関係構造を明示的に認識し,潜在相互作用グラフによる予測を行う汎用軌道予測フレームワークを提案する。
将来の行動の不確実性を考慮すると、モデルはマルチモーダルな予測仮説を提供するように設計されている。
トレーニング効率を向上し、収束を加速するだけでなく、モデル性能も向上する2段トレーニングパイプラインを導入する。
論文 参考訳(メタデータ) (2020-03-31T02:49:23Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
本稿では,マルチエージェント軌道予測のためのジェネリック生成ニューラルシステムを提案する。
また、車両軌道予測に効率的なキネマティック拘束層を応用した。
提案システムは,軌道予測のための3つの公開ベンチマークデータセットを用いて評価する。
論文 参考訳(メタデータ) (2020-02-14T20:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。