AdaSTE: An Adaptive Straight-Through Estimator to Train Binary Neural
Networks
- URL: http://arxiv.org/abs/2112.02880v1
- Date: Mon, 6 Dec 2021 09:12:15 GMT
- Title: AdaSTE: An Adaptive Straight-Through Estimator to Train Binary Neural
Networks
- Authors: Huu Le, Rasmus Kj{\ae}r H{\o}ier, Che-Tsung Lin, Christopher Zach
- Abstract summary: We propose a new algorithm for training deep neural networks (DNNs) with binary weights.
Experimental results demonstrate that our new algorithm offers favorable performance compared to existing approaches.
- Score: 34.263013539187355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a new algorithm for training deep neural networks (DNNs) with
binary weights. In particular, we first cast the problem of training binary
neural networks (BiNNs) as a bilevel optimization instance and subsequently
construct flexible relaxations of this bilevel program. The resulting training
method shares its algorithmic simplicity with several existing approaches to
train BiNNs, in particular with the straight-through gradient estimator
successfully employed in BinaryConnect and subsequent methods. In fact, our
proposed method can be interpreted as an adaptive variant of the original
straight-through estimator that conditionally (but not always) acts like a
linear mapping in the backward pass of error propagation. Experimental results
demonstrate that our new algorithm offers favorable performance compared to
existing approaches.
Related papers
- A lifted Bregman strategy for training unfolded proximal neural network Gaussian denoisers [8.343594411714934]
Unfolded proximal neural networks (PNNs) form a family of methods that combines deep learning and proximal optimization approaches.
We propose a lifted training formulation based on Bregman distances for unfolded PNNs.
We assess the behaviour of the proposed training approach for PNNs through numerical simulations on image denoising.
arXiv Detail & Related papers (2024-08-16T13:41:34Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - An Adaptive and Stability-Promoting Layerwise Training Approach for Sparse Deep Neural Network Architecture [0.0]
This work presents a two-stage adaptive framework for developing deep neural network (DNN) architectures that generalize well for a given training data set.
In the first stage, a layerwise training approach is adopted where a new layer is added each time and trained independently by freezing parameters in the previous layers.
We introduce a epsilon-delta stability-promoting concept as a desirable property for a learning algorithm and show that employing manifold regularization yields a epsilon-delta stability-promoting algorithm.
arXiv Detail & Related papers (2022-11-13T09:51:16Z) - AskewSGD : An Annealed interval-constrained Optimisation method to train
Quantized Neural Networks [12.229154524476405]
We develop a new algorithm, Annealed Skewed SGD - AskewSGD - for training deep neural networks (DNNs) with quantized weights.
Unlike algorithms with active sets and feasible directions, AskewSGD avoids projections or optimization under the entire feasible set.
Experimental results show that the AskewSGD algorithm performs better than or on par with state of the art methods in classical benchmarks.
arXiv Detail & Related papers (2022-11-07T18:13:44Z) - Recurrent Bilinear Optimization for Binary Neural Networks [58.972212365275595]
BNNs neglect the intrinsic bilinear relationship of real-valued weights and scale factors.
Our work is the first attempt to optimize BNNs from the bilinear perspective.
We obtain robust RBONNs, which show impressive performance over state-of-the-art BNNs on various models and datasets.
arXiv Detail & Related papers (2022-09-04T06:45:33Z) - Lifted Bregman Training of Neural Networks [28.03724379169264]
We introduce a novel mathematical formulation for the training of feed-forward neural networks with (potentially non-smooth) proximal maps as activation functions.
This formulation is based on Bregman and a key advantage is that its partial derivatives with respect to the network's parameters do not require the computation of derivatives of the network's activation functions.
We present several numerical results that demonstrate that these training approaches can be equally well or even better suited for the training of neural network-based classifiers and (denoising) autoencoders with sparse coding.
arXiv Detail & Related papers (2022-08-18T11:12:52Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - Learning Neural Network Subspaces [74.44457651546728]
Recent observations have advanced our understanding of the neural network optimization landscape.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
arXiv Detail & Related papers (2021-02-20T23:26:58Z) - Parallelization Techniques for Verifying Neural Networks [52.917845265248744]
We introduce an algorithm based on the verification problem in an iterative manner and explore two partitioning strategies.
We also introduce a highly parallelizable pre-processing algorithm that uses the neuron activation phases to simplify the neural network verification problems.
arXiv Detail & Related papers (2020-04-17T20:21:47Z) - Training Binary Neural Networks using the Bayesian Learning Rule [19.01146578435531]
Neural networks with binary weights are computation-efficient and hardware-friendly, but their training is challenging because it involves a discrete optimization problem.
We propose a principled approach for training binary neural networks which justifies and extends existing approaches.
Our work provides a principled approach for training binary neural networks which justifies and extends existing approaches.
arXiv Detail & Related papers (2020-02-25T10:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.