論文の概要: Two Wrongs Don't Make a Right: Combating Confirmation Bias in Learning
with Label Noise
- arxiv url: http://arxiv.org/abs/2112.02960v1
- Date: Mon, 6 Dec 2021 12:10:17 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-07 17:00:32.657582
- Title: Two Wrongs Don't Make a Right: Combating Confirmation Bias in Learning
with Label Noise
- Title(参考訳): 2つの誤りは正しいものではない - ラベルノイズによる学習における確認バイアスと戦う
- Authors: Mingcai Chen, Hao Cheng, Yuntao Du, Ming Xu, Wenyu Jiang, Chongjun
Wang
- Abstract要約: Robust Label Refurbishment (Robust LR) は、擬似ラベルと信頼度推定技術を組み込んだ新しいハイブリッド手法である。
本手法はラベルノイズと確認バイアスの両方の損傷を軽減できることを示す。
例えば、Robust LRは、実世界のノイズデータセットであるWebVisionにおいて、以前の最高値よりも最大4.5%の絶対的トップ1精度の向上を実現している。
- 参考スコア(独自算出の注目度): 6.303101074386922
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Noisy labels damage the performance of deep networks. For robust learning, a
prominent two-stage pipeline alternates between eliminating possible incorrect
labels and semi-supervised training. However, discarding part of observed
labels could result in a loss of information, especially when the corruption is
not completely random, e.g., class-dependent or instance-dependent. Moreover,
from the training dynamics of a representative two-stage method DivideMix, we
identify the domination of confirmation bias: Pseudo-labels fail to correct a
considerable amount of noisy labels and consequently, the errors accumulate. To
sufficiently exploit information from observed labels and mitigate wrong
corrections, we propose Robust Label Refurbishment (Robust LR)-a new hybrid
method that integrates pseudo-labeling and confidence estimation techniques to
refurbish noisy labels. We show that our method successfully alleviates the
damage of both label noise and confirmation bias. As a result, it achieves
state-of-the-art results across datasets and noise types. For example, Robust
LR achieves up to 4.5% absolute top-1 accuracy improvement over the previous
best on the real-world noisy dataset WebVision.
- Abstract(参考訳): ノイズラベルはディープネットワークの性能を損なう。
ロバストな学習では、2段階のパイプラインが不正確なラベルを排除することと、半教師付きトレーニングを交互に行う。
しかし、観察されたラベルの廃棄は、特に腐敗が完全にランダムでない場合、例えばクラス依存やインスタンス依存など、情報の喪失につながる可能性がある。
さらに、代表的な2段階法であるDivideMixの訓練力学から、確認バイアスの優位性を同定する:擬似ラベルは、かなりのノイズラベルを補正できず、結果としてエラーが蓄積される。
観測されたラベルからの情報を十分に活用し、誤り訂正を緩和するために、疑似ラベルと信頼度推定を組み込んだ新しいハイブリッド手法であるRobust Label Refurbishment (Robust LR)を提案する。
本手法はラベルノイズと確認バイアスの両方の損傷を軽減できることを示す。
その結果、データセットとノイズタイプ間で最先端の結果が得られる。
例えば、Robust LRは、実世界のノイズデータセットであるWebVisionにおいて、以前の最高値よりも最大4.5%の絶対的トップ1精度の向上を実現している。
関連論文リスト
- Alternative Pseudo-Labeling for Semi-Supervised Automatic Speech
Recognition [49.42732949233184]
ラベル付きデータが不十分な場合、擬似ラベル技術による半教師付き学習は自動音声認識の性能を大幅に向上させることができる。
損失関数のグラウンドトルースとしてノイズラベルを取ると、最適以下の性能が得られる。
そこで我々は,ノイズの多い擬似ラベル問題に対処するために,代替擬似ラベル方式という新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-08-12T12:13:52Z) - Pseudo-Label Noise Suppression Techniques for Semi-Supervised Semantic
Segmentation [21.163070161951868]
半消費学習(SSL)は、教師なしデータをトレーニングに組み込むことで、大きなラベル付きデータセットの必要性を減らすことができる。
現在のSSLアプローチでは、初期教師付きトレーニングモデルを使用して、擬似ラベルと呼ばれる未ラベル画像の予測を生成する。
擬似ラベルノイズと誤りを3つのメカニズムで制御する。
論文 参考訳(メタデータ) (2022-10-19T09:46:27Z) - Is your noise correction noisy? PLS: Robustness to label noise with two
stage detection [16.65296285599679]
本報告では, ノイズが検出された場合に, ノイズの補正精度を向上させることを提案する。
多くの最先端コントリビューションでは、修正された擬似ラベルを推測する前にノイズサンプルを検出する2段階のアプローチが採用されている。
ノイズサンプルの擬似ラベルの正しさと強く相関する単純な測度である擬似ロスを提案する。
論文 参考訳(メタデータ) (2022-10-10T11:32:28Z) - S3: Supervised Self-supervised Learning under Label Noise [53.02249460567745]
本稿では,ラベルノイズの存在下での分類の問題に対処する。
提案手法の核心は,サンプルのアノテートラベルと特徴空間内のその近傍のラベルの分布との整合性に依存するサンプル選択機構である。
提案手法は,CIFARCIFAR100とWebVisionやANIMAL-10Nなどの実環境ノイズデータセットの両方で,従来の手法をはるかに上回っている。
論文 参考訳(メタデータ) (2021-11-22T15:49:20Z) - Label Noise in Adversarial Training: A Novel Perspective to Study Robust
Overfitting [45.58217741522973]
逆行訓練においてラベルノイズが存在することを示す。
このようなラベルノイズは、正反対例の真のラベル分布とクリーン例から受け継いだラベルとのミスマッチに起因する。
本稿では,ラベルノイズと頑健なオーバーフィッティングに対処するため,ラベルの自動校正手法を提案する。
論文 参考訳(メタデータ) (2021-10-07T01:15:06Z) - An Ensemble Noise-Robust K-fold Cross-Validation Selection Method for
Noisy Labels [0.9699640804685629]
大規模なデータセットには、ディープニューラルネットワーク(DNN)によって記憶されるような、ラベルのずれたサンプルが含まれている傾向があります。
本稿では, ノイズデータからクリーンなサンプルを効果的に選択するために, アンサンブルノイズ・ロバスト K-fold Cross-Validation Selection (E-NKCVS) を提案する。
我々は,ラベルが手動で異なる雑音比で破損した様々な画像・テキスト分類タスクに対するアプローチを評価する。
論文 参考訳(メタデータ) (2021-07-06T02:14:52Z) - Disentangling Sampling and Labeling Bias for Learning in Large-Output
Spaces [64.23172847182109]
異なる負のサンプリングスキームが支配的ラベルと稀なラベルで暗黙的にトレードオフパフォーマンスを示す。
すべてのラベルのサブセットで作業することで生じるサンプリングバイアスと、ラベルの不均衡に起因するデータ固有のラベルバイアスの両方に明示的に対処する統一された手段を提供する。
論文 参考訳(メタデータ) (2021-05-12T15:40:13Z) - Boosting Semi-Supervised Face Recognition with Noise Robustness [54.342992887966616]
本稿では,自動ラベルによるラベル雑音に対して頑健な半教師付き顔認識に対する効果的な解法を提案する。
そこで我々は,gnが強化するロバストな学習能力に基づく,ノイズロバスト学習ラベリング(nroll)という,半教師付き顔認識ソリューションを開発した。
論文 参考訳(メタデータ) (2021-05-10T14:43:11Z) - A Second-Order Approach to Learning with Instance-Dependent Label Noise [58.555527517928596]
ラベルノイズの存在は、しばしばディープニューラルネットワークのトレーニングを誤解させる。
人間による注釈付きラベルのエラーは、タスクの難易度レベルに依存する可能性が高いことを示しています。
論文 参考訳(メタデータ) (2020-12-22T06:36:58Z) - Error-Bounded Correction of Noisy Labels [17.510654621245656]
ノイズのある分類器の予測は、トレーニングデータのラベルがクリーンかどうかを示す良い指標であることを示す。
理論的結果に基づいて,雑音分類器の予測に基づいてラベルを補正する新しいアルゴリズムを提案する。
ラベル補正アルゴリズムをディープニューラルネットワークのトレーニングや,複数の公開データセット上で優れたテスト性能を実現するトレーニングモデルに組み込む。
論文 参考訳(メタデータ) (2020-11-19T19:23:23Z) - Learning to Purify Noisy Labels via Meta Soft Label Corrector [49.92310583232323]
最近のディープニューラルネットワーク(DNN)は、ノイズラベルによるバイアス付きトレーニングデータに容易に適合する。
ラベル修正戦略はこの問題を軽減するために一般的に用いられる。
メタ学習モデルを提案する。
論文 参考訳(メタデータ) (2020-08-03T03:25:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。