Diffusion Models for Implicit Image Segmentation Ensembles
- URL: http://arxiv.org/abs/2112.03145v1
- Date: Mon, 6 Dec 2021 16:28:15 GMT
- Title: Diffusion Models for Implicit Image Segmentation Ensembles
- Authors: Julia Wolleb, Robin Sandk\"uhler, Florentin Bieder, Philippe
Valmaggia, Philippe C. Cattin
- Abstract summary: We present a novel semantic segmentation method based on diffusion models.
By modifying the training and sampling scheme, we show that diffusion models can perform lesion segmentation of medical images.
Compared to state-of-the-art segmentation models, our approach yields good segmentation results and, additionally, meaningful uncertainty maps.
- Score: 1.444701913511243
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have shown impressive performance for generative modelling
of images. In this paper, we present a novel semantic segmentation method based
on diffusion models. By modifying the training and sampling scheme, we show
that diffusion models can perform lesion segmentation of medical images. To
generate an image specific segmentation, we train the model on the ground truth
segmentation, and use the image as a prior during training and in every step
during the sampling process. With the given stochastic sampling process, we can
generate a distribution of segmentation masks. This property allows us to
compute pixel-wise uncertainty maps of the segmentation, and allows an implicit
ensemble of segmentations that increases the segmentation performance. We
evaluate our method on the BRATS2020 dataset for brain tumor segmentation.
Compared to state-of-the-art segmentation models, our approach yields good
segmentation results and, additionally, meaningful uncertainty maps.
Related papers
- Unleashing the Potential of the Diffusion Model in Few-shot Semantic Segmentation [56.87049651707208]
Few-shot Semantic has evolved into In-context tasks, morphing into a crucial element in assessing generalist segmentation models.
Our initial focus lies in understanding how to facilitate interaction between the query image and the support image, resulting in the proposal of a KV fusion method within the self-attention framework.
Based on our analysis, we establish a simple and effective framework named DiffewS, maximally retaining the original Latent Diffusion Model's generative framework.
arXiv Detail & Related papers (2024-10-03T10:33:49Z) - FlowSDF: Flow Matching for Medical Image Segmentation Using Distance Transforms [60.195642571004804]
We propose FlowSDF, an image-guided conditional flow matching framework to represent the signed distance function (SDF)
By learning a vector field that is directly related to the probability path of a conditional distribution of SDFs, we can accurately sample from the distribution of segmentation masks.
arXiv Detail & Related papers (2024-05-28T11:47:12Z) - EmerDiff: Emerging Pixel-level Semantic Knowledge in Diffusion Models [52.3015009878545]
We develop an image segmentor capable of generating fine-grained segmentation maps without any additional training.
Our framework identifies semantic correspondences between image pixels and spatial locations of low-dimensional feature maps.
In extensive experiments, the produced segmentation maps are demonstrated to be well delineated and capture detailed parts of the images.
arXiv Detail & Related papers (2024-01-22T07:34:06Z) - Surf-CDM: Score-Based Surface Cold-Diffusion Model For Medical Image
Segmentation [15.275335829889086]
We propose a conditional score-based generative modeling framework for medical image segmentation.
We evaluate our method on the segmentation of the left ventricle from 65 transthoracic echocardiogram videos.
Our proposed model not only outperformed the compared methods in terms of segmentation accuracy, but also showed potential in estimating segmentation uncertainties.
arXiv Detail & Related papers (2023-12-19T22:50:02Z) - SegRefiner: Towards Model-Agnostic Segmentation Refinement with Discrete
Diffusion Process [102.18226145874007]
We propose a model-agnostic solution called SegRefiner to enhance the quality of object masks produced by different segmentation models.
SegRefiner takes coarse masks as inputs and refines them using a discrete diffusion process.
It consistently improves both the segmentation metrics and boundary metrics across different types of coarse masks.
arXiv Detail & Related papers (2023-12-19T18:53:47Z) - Towards Better Certified Segmentation via Diffusion Models [62.21617614504225]
segmentation models can be vulnerable to adversarial perturbations, which hinders their use in critical-decision systems like healthcare or autonomous driving.
Recently, randomized smoothing has been proposed to certify segmentation predictions by adding Gaussian noise to the input to obtain theoretical guarantees.
In this paper, we address the problem of certifying segmentation prediction using a combination of randomized smoothing and diffusion models.
arXiv Detail & Related papers (2023-06-16T16:30:39Z) - Conditional Diffusion Models for Weakly Supervised Medical Image
Segmentation [18.956306942099097]
Conditional diffusion models (CDM) is capable of generating images subject to specific distributions.
We utilize category-aware semantic information underlied in CDM to get the prediction mask of the target object.
Our method outperforms state-of-the-art CAM and diffusion model methods on two public medical image segmentation datasets.
arXiv Detail & Related papers (2023-06-06T17:29:26Z) - Stochastic Segmentation with Conditional Categorical Diffusion Models [3.8168879948759953]
We propose a conditional categorical diffusion model (CCDM) for semantic segmentation based on Denoising Diffusion Probabilistic Models.
Our results show that CCDM achieves state-of-the-art performance on LIDC, and outperforms established baselines on the classical segmentation dataset Cityscapes.
arXiv Detail & Related papers (2023-03-15T19:16:47Z) - Label-Efficient Semantic Segmentation with Diffusion Models [27.01899943738203]
We demonstrate that diffusion models can also serve as an instrument for semantic segmentation.
In particular, for several pretrained diffusion models, we investigate the intermediate activations from the networks that perform the Markov step of the reverse diffusion process.
We show that these activations effectively capture the semantic information from an input image and appear to be excellent pixel-level representations for the segmentation problem.
arXiv Detail & Related papers (2021-12-06T15:55:30Z) - SegDiff: Image Segmentation with Diffusion Probabilistic Models [81.16986859755038]
Diffusion Probabilistic Methods are employed for state-of-the-art image generation.
We present a method for extending such models for performing image segmentation.
The method learns end-to-end, without relying on a pre-trained backbone.
arXiv Detail & Related papers (2021-12-01T10:17:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.