FlowSDF: Flow Matching for Medical Image Segmentation Using Distance Transforms
- URL: http://arxiv.org/abs/2405.18087v1
- Date: Tue, 28 May 2024 11:47:12 GMT
- Title: FlowSDF: Flow Matching for Medical Image Segmentation Using Distance Transforms
- Authors: Lea Bogensperger, Dominik Narnhofer, Alexander Falk, Konrad Schindler, Thomas Pock,
- Abstract summary: We propose FlowSDF, an image-guided conditional flow matching framework to represent the signed distance function (SDF)
By learning a vector field that is directly related to the probability path of a conditional distribution of SDFs, we can accurately sample from the distribution of segmentation masks.
- Score: 60.195642571004804
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image segmentation is a crucial task that relies on the ability to accurately identify and isolate regions of interest in medical images. Thereby, generative approaches allow to capture the statistical properties of segmentation masks that are dependent on the respective structures. In this work we propose FlowSDF, an image-guided conditional flow matching framework to represent the signed distance function (SDF) leading to an implicit distribution of segmentation masks. The advantage of leveraging the SDF is a more natural distortion when compared to that of binary masks. By learning a vector field that is directly related to the probability path of a conditional distribution of SDFs, we can accurately sample from the distribution of segmentation masks, allowing for the evaluation of statistical quantities. Thus, this probabilistic representation allows for the generation of uncertainty maps represented by the variance, which can aid in further analysis and enhance the predictive robustness. We qualitatively and quantitatively illustrate competitive performance of the proposed method on a public nuclei and gland segmentation data set, highlighting its utility in medical image segmentation applications.
Related papers
- Unleashing the Potential of the Diffusion Model in Few-shot Semantic Segmentation [56.87049651707208]
Few-shot Semantic has evolved into In-context tasks, morphing into a crucial element in assessing generalist segmentation models.
Our initial focus lies in understanding how to facilitate interaction between the query image and the support image, resulting in the proposal of a KV fusion method within the self-attention framework.
Based on our analysis, we establish a simple and effective framework named DiffewS, maximally retaining the original Latent Diffusion Model's generative framework.
arXiv Detail & Related papers (2024-10-03T10:33:49Z) - EmerDiff: Emerging Pixel-level Semantic Knowledge in Diffusion Models [52.3015009878545]
We develop an image segmentor capable of generating fine-grained segmentation maps without any additional training.
Our framework identifies semantic correspondences between image pixels and spatial locations of low-dimensional feature maps.
In extensive experiments, the produced segmentation maps are demonstrated to be well delineated and capture detailed parts of the images.
arXiv Detail & Related papers (2024-01-22T07:34:06Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - BerDiff: Conditional Bernoulli Diffusion Model for Medical Image
Segmentation [19.036821997968552]
We propose a conditional Bernoulli Diffusion model for medical image segmentation (BerDiff)
Our results show that our BerDiff outperforms other recently published state-of-the-art methods.
arXiv Detail & Related papers (2023-04-10T07:21:38Z) - Stochastic Segmentation with Conditional Categorical Diffusion Models [3.8168879948759953]
We propose a conditional categorical diffusion model (CCDM) for semantic segmentation based on Denoising Diffusion Probabilistic Models.
Our results show that CCDM achieves state-of-the-art performance on LIDC, and outperforms established baselines on the classical segmentation dataset Cityscapes.
arXiv Detail & Related papers (2023-03-15T19:16:47Z) - Score-Based Generative Models for Medical Image Segmentation using
Signed Distance Functions [11.137438870686026]
We propose a conditional score-based generative modeling framework to represent the signed distance function (SDF)
The advantage of leveraging the SDF is a more natural distortion when compared to that of binary masks.
arXiv Detail & Related papers (2023-03-10T14:55:35Z) - Learning disentangled representations for explainable chest X-ray
classification using Dirichlet VAEs [68.73427163074015]
This study explores the use of the Dirichlet Variational Autoencoder (DirVAE) for learning disentangled latent representations of chest X-ray (CXR) images.
The predictive capacity of multi-modal latent representations learned by DirVAE models is investigated through implementation of an auxiliary multi-label classification task.
arXiv Detail & Related papers (2023-02-06T18:10:08Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Diffusion Models for Implicit Image Segmentation Ensembles [1.444701913511243]
We present a novel semantic segmentation method based on diffusion models.
By modifying the training and sampling scheme, we show that diffusion models can perform lesion segmentation of medical images.
Compared to state-of-the-art segmentation models, our approach yields good segmentation results and, additionally, meaningful uncertainty maps.
arXiv Detail & Related papers (2021-12-06T16:28:15Z) - Uncertainty quantification in medical image segmentation with
normalizing flows [0.9176056742068811]
We propose a novel conditional generative model that is based on conditional Normalizing Flow (cFlow)
The basic idea is to increase the expressivity of the cVAE by introducing a cFlow transformation step after the encoder.
This yields improved approximations of the latent posterior distribution, allowing the model to capture richer segmentation variations.
arXiv Detail & Related papers (2020-06-04T07:56:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.