Tele-EvalNet: A Low-cost, Teleconsultation System for Home based
Rehabilitation of Stroke Survivors using Multiscale CNN-LSTM Architecture
- URL: http://arxiv.org/abs/2112.03168v1
- Date: Mon, 6 Dec 2021 16:58:00 GMT
- Title: Tele-EvalNet: A Low-cost, Teleconsultation System for Home based
Rehabilitation of Stroke Survivors using Multiscale CNN-LSTM Architecture
- Authors: Aditya Kanade and Mansi Sharma and M. Manivannan
- Abstract summary: We propose Tele-EvalNet, a novel system consisting of two components: a live feedback model and an overall performance evaluation model.
The live feedback model demonstrates feedback on exercise correctness with easy to understand instructions highlighted using color markers.
The overall performance evaluation model learns a mapping of joint data to scores, given to the performance by clinicians.
- Score: 7.971065005161566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Technology has an important role to play in the field of Rehabilitation,
improving patient outcomes and reducing healthcare costs. However, existing
approaches lack clinical validation, robustness and ease of use. We propose
Tele-EvalNet, a novel system consisting of two components: a live feedback
model and an overall performance evaluation model. The live feedback model
demonstrates feedback on exercise correctness with easy to understand
instructions highlighted using color markers. The overall performance
evaluation model learns a mapping of joint data to scores, given to the
performance by clinicians. The model does this by extracting clinically
approved features from joint data. Further, these features are encoded to a
lower dimensional space with an autoencoder. A novel multi-scale CNN-LSTM
network is proposed to learn a mapping of performance data to the scores by
leveraging features extracted at multiple scales. The proposed system shows a
high degree of improvement in score predictions and outperforms the
state-of-the-art rehabilitation models.
Related papers
- A lightweight residual network for unsupervised deformable image registration [2.7309692684728617]
We propose a residual U-Net with embedded parallel dilated-convolutional blocks to enhance the receptive field.
The proposed method is evaluated on inter-patient and atlas-based datasets.
arXiv Detail & Related papers (2024-06-14T07:20:49Z) - D-STGCNT: A Dense Spatio-Temporal Graph Conv-GRU Network based on
transformer for assessment of patient physical rehabilitation [0.3626013617212666]
This paper introduces a new graph-based model for assessing rehabilitation exercises.
Dense connections and GRU mechanisms are used to rapidly process large 3D skeleton inputs.
The evaluation of our proposed approach on the KIMORE and UI-PRMD datasets highlighted its potential.
arXiv Detail & Related papers (2023-12-21T00:38:31Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
We propose a new paradigm to build robust and interpretable medical image classifiers with natural language concepts.
Specifically, we first query clinical concepts from GPT-4, then transform latent image features into explicit concepts with a vision-language model.
arXiv Detail & Related papers (2023-10-04T21:57:09Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
Clinical trials are critical for drug development but often suffer from expensive and inefficient patient recruitment.
In recent years, machine learning models have been proposed for speeding up patient recruitment via automatically matching patients with clinical trials.
We introduce a dynamic tree-based memory network model named TREEMENT to provide accurate and interpretable patient trial matching.
arXiv Detail & Related papers (2023-07-19T12:35:09Z) - A Light-weight CNN Model for Efficient Parkinson's Disease Diagnostics [1.382077805849933]
The proposed model consists of a convolution neural network (CNN) to short-term memory (LSTM) to adapt the characteristics of collected time-series signals.
Experimental results show that the proposed model achieves a high-quality diagnostic result over multiple evaluation metrics with much fewer parameters and operations.
arXiv Detail & Related papers (2023-02-02T09:49:07Z) - CONVIQT: Contrastive Video Quality Estimator [63.749184706461826]
Perceptual video quality assessment (VQA) is an integral component of many streaming and video sharing platforms.
Here we consider the problem of learning perceptually relevant video quality representations in a self-supervised manner.
Our results indicate that compelling representations with perceptual bearing can be obtained using self-supervised learning.
arXiv Detail & Related papers (2022-06-29T15:22:01Z) - CNN-LSTM Based Multimodal MRI and Clinical Data Fusion for Predicting
Functional Outcome in Stroke Patients [1.5250925845050138]
Clinical outcome prediction plays an important role in stroke patient management.
From a machine learning point-of-view, one of the main challenges is dealing with heterogeneous data.
In this paper a multimodal convolutional neural network - long short-term memory (CNN-LSTM) based ensemble model is proposed.
arXiv Detail & Related papers (2022-05-11T14:46:01Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Accurate and Efficient Intracranial Hemorrhage Detection and Subtype
Classification in 3D CT Scans with Convolutional and Long Short-Term Memory
Neural Networks [20.4701676109641]
We present our system for the RSNA Intracranial Hemorrhage Detection challenge.
The proposed system is based on a lightweight deep neural network architecture composed of a convolutional neural network (CNN)
We report a weighted mean log loss of 0.04989 on the final test set, which places us in the top 30 ranking (2%) from a total of 1345 participants.
arXiv Detail & Related papers (2020-08-01T17:28:25Z) - Self-Training with Improved Regularization for Sample-Efficient Chest
X-Ray Classification [80.00316465793702]
We present a deep learning framework that enables robust modeling in challenging scenarios.
Our results show that using 85% lesser labeled data, we can build predictive models that match the performance of classifiers trained in a large-scale data setting.
arXiv Detail & Related papers (2020-05-03T02:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.