Quantum walks do not like bridges
- URL: http://arxiv.org/abs/2112.03374v1
- Date: Mon, 6 Dec 2021 21:58:37 GMT
- Title: Quantum walks do not like bridges
- Authors: Gabriel Coutinho, Chris Godsil, Emanuel Juliano, Christopher M. van
Bommel
- Abstract summary: We consider graphs with two cut vertices joined by a path with one or two edges, and prove that there can be no quantum perfect state transfer between these, unless the graph has no other edges.
We see our result as an intermediate step to broaden the understanding of how connectivity plays a key role in quantum walks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider graphs with two cut vertices joined by a path with one or two
edges, and prove that there can be no quantum perfect state transfer between
these vertices, unless the graph has no other vertex. We achieve this result by
applying the 1-sum lemma for the characteristic polynomial of graphs, the
neutrino identities that relate entries of eigenprojectors and eigenvalues, and
variational principles for eigenvalues (Cauchy interlacing, Weyl inequalities
and Wielandt minimax principle). We see our result as an intermediate step to
broaden the understanding of how connectivity plays a key role in quantum
walks, and as further evidence of the conjecture that no tree on four or more
vertices admits state transfer. We conclude with some open problems.
Related papers
- Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - Unifying quantum spatial search, state transfer and uniform sampling on graphs: simple and exact [2.871419116565751]
This article presents a novel and succinct algorithmic framework via alternating quantum walks.
It unifies quantum spatial search, state transfer and uniform sampling on a large class of graphs.
The approach is easy to use since it has a succinct formalism that depends only on the depth of the Laplacian eigenvalue set of the graph.
arXiv Detail & Related papers (2024-07-01T06:09:19Z) - Global Phase Helps in Quantum Search: Yet Another Look at the Welded Tree Problem [55.80819771134007]
In this paper, we give a short proof of the optimal linear hitting time for a welded tree problem by a discrete-time quantum walk.
The same technique can be applied to other 1-dimensional hierarchical graphs.
arXiv Detail & Related papers (2024-04-30T11:45:49Z) - Walking on Vertices and Edges by Continuous-Time Quantum Walk [0.0]
We define a version of the continuous-time quantum walk that allows the walker to hop from vertices to edges and vice versa.
We analyze the spatial search algorithm on the complete bipartite graph by modifying the new version of the Hamiltonian.
arXiv Detail & Related papers (2022-06-07T15:10:18Z) - The Exact Class of Graph Functions Generated by Graph Neural Networks [43.25172578943894]
Graph Neural Network (GNN) whose output is identical to the graph function?
In this paper, we fully answer this question and characterize the class of graph problems that can be represented by GNNs.
We show that this condition can be efficiently verified by checking quadratically many constraints.
arXiv Detail & Related papers (2022-02-17T18:54:27Z) - Quantum state transfer between twins in weighted graphs [0.0]
We explore the role of twin vertices in quantum state transfer.
We provide characterizations of periodicity, perfect state transfer, and pretty good state transfer.
As an application, we provide characterizations of all simple unweighted double cones on regular graphs that exhibit periodicity, perfect state transfer, and pretty good state transfer.
arXiv Detail & Related papers (2022-01-08T01:15:24Z) - Equivalent Laplacian and Adjacency Quantum Walks on Irregular Graphs [0.0]
The continuous-time quantum walk is a particle evolving by Schr"odinger's equation in discrete space.
In some physical systems, however, the Hamiltonian is proportional to the adjacency matrix instead.
arXiv Detail & Related papers (2021-07-12T16:59:06Z) - A Thorough View of Exact Inference in Graphs from the Degree-4
Sum-of-Squares Hierarchy [37.34153902687548]
We tackle the problem of exactly recovering an unknown ground-truth binary labeling of the nodes from a single corrupted observation of each edge.
We apply a hierarchy of relaxations known as the sum-of-squares hierarchy, to the problem.
We show that the solution of the dual of the relaxed problem is related to finding edge weights of the Johnson and Kneser graphs.
arXiv Detail & Related papers (2021-02-16T08:36:19Z) - Hamiltonian systems, Toda lattices, Solitons, Lax Pairs on weighted
Z-graded graphs [62.997667081978825]
We identify conditions which allow one to lift one dimensional solutions to solutions on graphs.
We show that even for a simple example of a topologically interesting graph the corresponding non-trivial Lax pairs and associated unitary transformations do not lift to a Lax pair on the Z-graded graph.
arXiv Detail & Related papers (2020-08-11T17:58:13Z) - Continuous-time quantum walks in the presence of a quadratic
perturbation [55.41644538483948]
We address the properties of continuous-time quantum walks with Hamiltonians of the form $mathcalH= L + lambda L2$.
We consider cycle, complete, and star graphs because paradigmatic models with low/high connectivity and/or symmetry.
arXiv Detail & Related papers (2020-05-13T14:53:36Z) - Analysis of Lackadaisical Quantum Walks [0.0]
The lackadaisical quantum walk is a quantum analogue of the lazy random walk obtained by adding a self-loop to each.
We analytically prove that lackadaisical quantum walks can find a unique marked.
vertebrae on any regular locally arc-transitive graph with constant success probability.
quadratically faster than the hitting time.
arXiv Detail & Related papers (2020-02-26T00:40:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.