GraphPAS: Parallel Architecture Search for Graph Neural Networks
- URL: http://arxiv.org/abs/2112.03461v1
- Date: Tue, 7 Dec 2021 02:55:24 GMT
- Title: GraphPAS: Parallel Architecture Search for Graph Neural Networks
- Authors: Jiamin Chen, Jianliang Gao, Yibo Chen, Oloulade Babatounde Moctard,
Tengfei Lyu, Zhao Li
- Abstract summary: We propose a parallel graph architecture search (GraphPAS) framework for graph neural networks.
In GraphPAS, we explore the search space in parallel by designing a sharing-based evolution learning.
The experimental result shows that GraphPAS outperforms state-of-art models with efficiency and accuracy simultaneously.
- Score: 12.860313120881996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural architecture search has received a lot of attention as Graph
Neural Networks (GNNs) has been successfully applied on the non-Euclidean data
recently. However, exploring all possible GNNs architectures in the huge search
space is too time-consuming or impossible for big graph data. In this paper, we
propose a parallel graph architecture search (GraphPAS) framework for graph
neural networks. In GraphPAS, we explore the search space in parallel by
designing a sharing-based evolution learning, which can improve the search
efficiency without losing the accuracy. Additionally, architecture information
entropy is adopted dynamically for mutation selection probability, which can
reduce space exploration. The experimental result shows that GraphPAS
outperforms state-of-art models with efficiency and accuracy simultaneously.
Related papers
- Towards Lightweight Graph Neural Network Search with Curriculum Graph Sparsification [48.334100429553644]
This paper proposes to design a joint graph data and architecture mechanism, which identifies important sub-architectures via the valuable graph data.
To search for optimal lightweight Graph Neural Networks (GNNs), we propose a Lightweight Graph Neural Architecture Search with Graph SparsIfication and Network Pruning (GASSIP) method.
Our method achieves on-par or even higher node classification performance with half or fewer model parameters of searched GNNs and a sparser graph.
arXiv Detail & Related papers (2024-06-24T06:53:37Z) - Efficient and Explainable Graph Neural Architecture Search via
Monte-Carlo Tree Search [5.076419064097733]
Graph neural networks (GNNs) are powerful tools for performing data science tasks in various domains.
To save human efforts and computational costs, graph neural architecture search (Graph NAS) has been used to search for a sub-optimal GNN architecture.
We propose ExGNAS, which consists of (i) a simple search space that can adapt to various graphs and (ii) a search algorithm that makes the decision process explainable.
arXiv Detail & Related papers (2023-08-30T03:21:45Z) - GraphPNAS: Learning Distribution of Good Neural Architectures via Deep
Graph Generative Models [48.57083463364353]
We study neural architecture search (NAS) through the lens of learning random graph models.
We propose GraphPNAS a deep graph generative model that learns a distribution of well-performing architectures.
We show that our proposed graph generator consistently outperforms RNN-based one and achieves better or comparable performances than state-of-the-art NAS methods.
arXiv Detail & Related papers (2022-11-28T09:09:06Z) - NAS-Bench-Graph: Benchmarking Graph Neural Architecture Search [55.75621026447599]
We propose NAS-Bench-Graph, a tailored benchmark that supports unified, reproducible, and efficient evaluations for GraphNAS.
Specifically, we construct a unified, expressive yet compact search space, covering 26,206 unique graph neural network (GNN) architectures.
Based on our proposed benchmark, the performance of GNN architectures can be directly obtained by a look-up table without any further computation.
arXiv Detail & Related papers (2022-06-18T10:17:15Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Edge-featured Graph Neural Architecture Search [131.4361207769865]
We propose Edge-featured Graph Neural Architecture Search to find the optimal GNN architecture.
Specifically, we design rich entity and edge updating operations to learn high-order representations.
We show EGNAS can search better GNNs with higher performance than current state-of-the-art human-designed and searched-based GNNs.
arXiv Detail & Related papers (2021-09-03T07:53:18Z) - Rethinking Graph Neural Network Search from Message-passing [120.62373472087651]
This paper proposes Graph Neural Architecture Search (GNAS) with novel-designed search space.
We design Graph Neural Architecture Paradigm (GAP) with tree-topology computation procedure and two types of fine-grained atomic operations.
Experiments show that our GNAS can search for better GNNs with multiple message-passing mechanisms and optimal message-passing depth.
arXiv Detail & Related papers (2021-03-26T06:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.