Sample-efficient benchmarking of multi-photon interference on a boson
sampler in the sparse regime
- URL: http://arxiv.org/abs/2008.09077v1
- Date: Thu, 20 Aug 2020 17:08:56 GMT
- Title: Sample-efficient benchmarking of multi-photon interference on a boson
sampler in the sparse regime
- Authors: Jelmer J. Renema, Hui Wang, Jian Qin, Xiang You, Chaoyang Lu, Jianwei
Pan
- Abstract summary: We show how to assess the quality of photonic interference in a linear optical quantum device (boson sampler)
We use a sparse set of samples to test whether a given boson sampling experiment meets known upper bounds on the level of noise permissible to demonstrate a quantum advantage.
- Score: 3.6083004172899447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Verification of a quantum advantage in the presence of noise is a key open
problem in the study of near-term quantum devices. In this work, we show how to
assess the quality of photonic interference in a linear optical quantum device
(boson sampler) by using a maximum likelihood method to measure the strength at
which various noise sources are present in the experiment. This allows us to
use a sparse set of samples to test whether a given boson sampling experiment
meets known upper bounds on the level of noise permissible to demonstrate a
quantum advantage. Furthermore, this method allows us monitor the evolution of
noise in real time, creating a valuable diagnostic tool. Finally, we observe
that sources of noise in the experiment compound, meaning that the observed
value of the mutual photon indistinguishability, which is the main imperfection
in our study, is an effective value taking into account all sources of error in
the experiment.
Related papers
- Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Entanglement-enhanced dual-comb spectroscopy [0.7340017786387767]
Dual-comb interferometry harnesses the interference of two laser frequency combs to provide unprecedented capability in spectroscopy applications.
We propose an entanglement-enhanced dual-comb spectroscopy protocol that leverages quantum resources to significantly improve the signal-to-noise ratio performance.
Our results show significant quantum advantages in the uW to mW power range, making this technique particularly attractive for biological and chemical sensing applications.
arXiv Detail & Related papers (2023-04-04T03:57:53Z) - Sensing microscopic noise events by frequent quantum measurements [3.4367812334545165]
We propose and experimentally demonstrate a method allowing us to unravel microscopic noise events that affect a continuous quantum variable.
This method proves the possibility of employing photons as quantum noise sensors and robust carriers of information.
arXiv Detail & Related papers (2022-12-23T18:45:33Z) - Certified Robustness of Quantum Classifiers against Adversarial Examples
through Quantum Noise [68.1992787416233]
We show that adding quantum random rotation noise can improve robustness in quantum classifiers against adversarial attacks.
We derive a certified robustness bound to enable quantum classifiers to defend against adversarial examples.
arXiv Detail & Related papers (2022-11-02T05:17:04Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Noise thresholds for classical simulability of non-linear Boson sampling [4.812718493682455]
We introduce higher order non-linearities as a mean to enhance the computational complexity of the problem and the protocol's robustness against noise.
Our results indicate that the addition of single-mode Kerr non-linearity at the input state preparation level, while retaining a linear-optical evolution, makes the Boson sampling protocol more robust against noise.
arXiv Detail & Related papers (2022-02-24T12:17:28Z) - Towards probing for hypercomplex quantum mechanics in a waveguide
interferometer [55.41644538483948]
We experimentally investigate the suitability of a multi-path waveguide interferometer with mechanical shutters for performing a test for hypercomplex quantum mechanics.
We systematically analyse the influence of experimental imperfections that could lead to a false-positive test result.
arXiv Detail & Related papers (2021-04-23T13:20:07Z) - Neural network quantum state tomography in a two-qubit experiment [52.77024349608834]
Machine learning inspired variational methods provide a promising route towards scalable state characterization for quantum simulators.
We benchmark and compare several such approaches by applying them to measured data from an experiment producing two-qubit entangled states.
We find that in the presence of experimental imperfections and noise, confining the variational manifold to physical states greatly improves the quality of the reconstructed states.
arXiv Detail & Related papers (2020-07-31T17:25:12Z) - Scheme for sub-shot-noise transmission measurement using a time
multiplexed single-photon source [0.0]
We simulate an experiment that uses a multiplexed single-photon source based on pair generation by continuous spontaneous parametric down conversion.
With such source, the sub-Poissonian statistics of the output signal is the key for achieving sub-shot-noise performance.
Results show that sub-shot-noise performance can be achieved, even without using number-resolving detectors.
arXiv Detail & Related papers (2020-07-31T04:26:53Z) - Boson sampling with random numbers of photons [0.0]
We show a novel boson sampling scheme where the probability of success increases instead of decreasing.
This is achieved by sampling at the same time in the number of occupied input ports and the number of input photons per port.
arXiv Detail & Related papers (2020-06-05T17:53:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.