Best Arm Identification under Additive Transfer Bandits
- URL: http://arxiv.org/abs/2112.04083v1
- Date: Wed, 8 Dec 2021 02:20:18 GMT
- Title: Best Arm Identification under Additive Transfer Bandits
- Authors: Ojash Neopane, Aaditya Ramdas, Aarti Singh
- Abstract summary: We study the setting when, despite the means being unknown, there is a known additive relationship between the source and target MAB instances.
We propose and theoretically analyze an LUCB-style algorithm to identify an $epsilon$-optimal target arm with high probability.
- Score: 49.69203462561861
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a variant of the best arm identification (BAI) problem in
multi-armed bandits (MAB) in which there are two sets of arms (source and
target), and the objective is to determine the best target arm while only
pulling source arms. In this paper, we study the setting when, despite the
means being unknown, there is a known additive relationship between the source
and target MAB instances. We show how our framework covers a range of
previously studied pure exploration problems and additionally captures new
problems. We propose and theoretically analyze an LUCB-style algorithm to
identify an $\epsilon$-optimal target arm with high probability. Our
theoretical analysis highlights aspects of this transfer learning problem that
do not arise in the typical BAI setup, and yet recover the LUCB algorithm for
single domain BAI as a special case.
Related papers
- Best Arm Identification with Minimal Regret [55.831935724659175]
Best arm identification problem elegantly amalgamates regret minimization and BAI.
Agent's goal is to identify the best arm with a prescribed confidence level.
Double KL-UCB algorithm achieves optimality as the confidence level tends to zero.
arXiv Detail & Related papers (2024-09-27T16:46:02Z) - A General Framework for Clustering and Distribution Matching with Bandit Feedback [81.50716021326194]
We develop a general framework for clustering and distribution matching problems with bandit feedback.
We derive a non-asymptotic lower bound on the average number of arm pulls for any online algorithm with an error probability not exceeding $delta$.
arXiv Detail & Related papers (2024-09-08T12:19:12Z) - Representative Arm Identification: A fixed confidence approach to identify cluster representatives [7.459521930846415]
We study the representative arm identification problem in the multi-armed bandits (MAB) framework.
The RAI problem covers as special cases several well-studied MAB problems such as identifying the best arm or any $M$ out of the top $K$.
We propose two algorithms, based on the idea of confidence intervals, and provide high probability upper bounds on their sample complexity.
arXiv Detail & Related papers (2024-08-26T11:47:52Z) - Pure Exploration for Constrained Best Mixed Arm Identification with a Fixed Budget [6.22018632187078]
We introduce the constrained best mixed arm identification (CBMAI) problem with a fixed budget.
The goal is to find the best mixed arm that maximizes the expected reward subject to constraints on the expected costs with a given learning budget $N$.
We provide a theoretical upper bound on the mis-identification (of the the support of the best mixed arm) probability and show that it decays exponentially in the budget $N$.
arXiv Detail & Related papers (2024-05-23T22:35:11Z) - Pure Exploration under Mediators' Feedback [63.56002444692792]
Multi-armed bandits are a sequential-decision-making framework, where, at each interaction step, the learner selects an arm and observes a reward.
We consider the scenario in which the learner has access to a set of mediators, each of which selects the arms on the agent's behalf according to a and possibly unknown policy.
We propose a sequential decision-making strategy for discovering the best arm under the assumption that the mediators' policies are known to the learner.
arXiv Detail & Related papers (2023-08-29T18:18:21Z) - Differential Good Arm Identification [4.666048091337632]
This paper targets a variant of the multi-armed bandit problem called good arm identification (GAI)
GAI is a pure-exploration bandit problem with the goal to output as many good arms using as few samples as possible.
We propose DGAI - a differentiable good arm identification algorithm.
arXiv Detail & Related papers (2023-03-13T14:28:21Z) - Achieving the Pareto Frontier of Regret Minimization and Best Arm
Identification in Multi-Armed Bandits [91.8283876874947]
We design and analyze the BoBW-lil'UCB$(gamma)$ algorithm.
We show that (i) no algorithm can simultaneously perform optimally for both the RM and BAI objectives.
We also show that BoBW-lil'UCB$(gamma)$ outperforms a competitor in terms of the time complexity and the regret.
arXiv Detail & Related papers (2021-10-16T17:52:32Z) - Quantile Bandits for Best Arms Identification [10.294977861990203]
We consider a variant of the best arm identification task in multi-armed bandits.
Motivated by risk-averse decision-making problems, our goal is to identify a set of $m$ arms with the highest $tau$-quantile values within a fixed budget.
arXiv Detail & Related papers (2020-10-22T09:58:54Z) - Statistically Robust, Risk-Averse Best Arm Identification in Multi-Armed
Bandits [4.760079434948198]
We show that specialized algorithms that exploit such parametric information are prone to inconsistent learning performance when the parameter is misspecified.
Our key contributions are: (i) We establish fundamental performance limits of statistically robust MAB algorithms under the fixed-budget pure exploration setting, and (ii) We propose two classes of algorithms that are twofoldly near-optimal.
arXiv Detail & Related papers (2020-08-28T13:43:12Z) - Optimal Best-arm Identification in Linear Bandits [79.3239137440876]
We devise a simple algorithm whose sampling complexity matches known instance-specific lower bounds.
Unlike existing best-arm identification strategies, our algorithm uses a stopping rule that does not depend on the number of arms.
arXiv Detail & Related papers (2020-06-29T14:25:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.