COSMIC: fast closed-form identification from large-scale data for LTV
systems
- URL: http://arxiv.org/abs/2112.04355v1
- Date: Wed, 8 Dec 2021 16:07:59 GMT
- Title: COSMIC: fast closed-form identification from large-scale data for LTV
systems
- Authors: Maria Carvalho and Claudia Soares and Pedro Louren\c{c}o and Rodrigo
Ventura
- Abstract summary: We introduce a closed-form method for identification of discrete-time linear timevariant systems from data.
We develop an algorithm with guarantees of optimality and with a complexity that increases linearly with the number of instants considered per trajectory.
Our algorithm was applied to both a Low Fidelity and Functional Engineering Simulators for the Comet Interceptor mission.
- Score: 4.10464681051471
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a closed-form method for identification of discrete-time linear
time-variant systems from data, formulating the learning problem as a
regularized least squares problem where the regularizer favors smooth solutions
within a trajectory. We develop a closed-form algorithm with guarantees of
optimality and with a complexity that increases linearly with the number of
instants considered per trajectory. The COSMIC algorithm achieves the desired
result even in the presence of large volumes of data. Our method solved the
problem using two orders of magnitude less computational power than a general
purpose convex solver and was about 3 times faster than a Stochastic Block
Coordinate Descent especially designed method. Computational times of our
method remained in the order of magnitude of the second even for 10k and 100k
time instants, where the general purpose solver crashed. To prove its
applicability to real world systems, we test with spring-mass-damper system and
use the estimated model to find the optimal control path. Our algorithm was
applied to both a Low Fidelity and Functional Engineering Simulators for the
Comet Interceptor mission, that requires precise pointing of the on-board
cameras in a fast dynamics environment. Thus, this paper provides a fast
alternative to classical system identification techniques for linear
time-variant systems, while proving to be a solid base for applications in the
Space industry and a step forward to the incorporation of algorithms that
leverage data in such a safety-critical environment.
Related papers
- Event-Aided Time-to-Collision Estimation for Autonomous Driving [28.13397992839372]
We present a novel method that estimates the time to collision using a neuromorphic event-based camera.
The proposed algorithm consists of a two-step approach for efficient and accurate geometric model fitting on event data.
Experiments on both synthetic and real data demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-07-10T02:37:36Z) - Generative modeling of time-dependent densities via optimal transport
and projection pursuit [3.069335774032178]
We propose a cheap alternative to popular deep learning algorithms for temporal modeling.
Our method is highly competitive compared with state-of-the-art solvers.
arXiv Detail & Related papers (2023-04-19T13:50:13Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Algorithms for perturbative analysis and simulation of quantum dynamics [0.0]
We develop general purpose algorithms for computing and utilizing both the Dyson series and Magnus expansion.
We demonstrate how to use these tools to approximate fidelity in a region of model parameter space.
We show how the pre-computation step can be phrased as a multivariable expansion problem with fewer terms than in the original method.
arXiv Detail & Related papers (2022-10-20T21:07:47Z) - Fast and Robust Non-Rigid Registration Using Accelerated
Majorization-Minimization [35.66014845211251]
Non-rigid registration, which deforms a source shape in a non-rigid way to align with a target shape, is a classical problem in computer vision.
Existing methods typically adopt the $ell_p$ type robust norm to measure the alignment error and regularize the smoothness of deformation.
We propose a formulation for robust non-rigid registration based on a globally smooth robust norm for alignment and regularization.
arXiv Detail & Related papers (2022-06-07T16:00:33Z) - Covariance-Free Sparse Bayesian Learning [62.24008859844098]
We introduce a new SBL inference algorithm that avoids explicit inversions of the covariance matrix.
Our method can be up to thousands of times faster than existing baselines.
We showcase how our new algorithm enables SBL to tractably tackle high-dimensional signal recovery problems.
arXiv Detail & Related papers (2021-05-21T16:20:07Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
We present DiffPD, an efficient differentiable soft-body simulator with implicit time integration.
We evaluate the performance of DiffPD and observe a speedup of 4-19 times compared to the standard Newton's method in various applications.
arXiv Detail & Related papers (2021-01-15T00:13:33Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
We propose a novel optimization backbone for visual SLAM systems.
We leverage averaging to improve the accuracy, efficiency and robustness of conventional monocular SLAM systems.
Our approach can exhibit up to 10x faster with comparable accuracy against the state-art on public benchmarks.
arXiv Detail & Related papers (2020-11-02T18:02:26Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
Maximum a posteriori (MAP) inference in discrete-valued random fields is a fundamental problem in machine learning.
Due to the difficulty of this problem, linear programming (LP) relaxations are commonly used to derive specialized message passing algorithms.
We present randomized methods for accelerating these algorithms by leveraging techniques that underlie classical accelerated gradient.
arXiv Detail & Related papers (2020-07-01T18:43:32Z) - Quasi-Newton Solver for Robust Non-Rigid Registration [35.66014845211251]
We propose a formulation for robust non-rigid registration based on a globally smooth robust estimator for data fitting and regularization.
We apply the majorization-minimization algorithm to the problem, which reduces each iteration to solving a simple least-squares problem with L-BFGS.
arXiv Detail & Related papers (2020-04-09T01:45:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.