Algorithms for perturbative analysis and simulation of quantum dynamics
- URL: http://arxiv.org/abs/2210.11595v2
- Date: Tue, 6 Jun 2023 16:28:38 GMT
- Title: Algorithms for perturbative analysis and simulation of quantum dynamics
- Authors: Daniel Puzzuoli, Sophia Fuhui Lin, Moein Malekakhlagh, Emily
Pritchett, Benjamin Rosand, Christopher J. Wood
- Abstract summary: We develop general purpose algorithms for computing and utilizing both the Dyson series and Magnus expansion.
We demonstrate how to use these tools to approximate fidelity in a region of model parameter space.
We show how the pre-computation step can be phrased as a multivariable expansion problem with fewer terms than in the original method.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop general purpose algorithms for computing and utilizing both the
Dyson series and Magnus expansion, with the goal of facilitating numerical
perturbative studies of quantum dynamics. To enable broad applications to
models with multiple parameters, we phrase our algorithms in terms of
multivariable sensitivity analysis, for either the solution or the
time-averaged generator of the evolution over a fixed time-interval. These
tools simultaneously compute a collection of terms up to arbitrary order, and
are general in the sense that the model can depend on the parameters in an
arbitrary time-dependent way. We implement the algorithms in the open source
software package \qiskitdynamics{}, utilizing the JAX array library to enable
just-in-time compilation, automatic differentiation, and GPU execution of all
computations. Using a model of a single transmon, we demonstrate how to use
these tools to approximate fidelity in a region of model parameter space, as
well as construct perturbative robust control objectives.
We also derive and implement Dyson and Magnus-based variations of the
recently introduced Dysolve algorithm [Shillito et al., Physical Review
Research, 3(3):033266] for simulating linear matrix differential equations. We
show how the pre-computation step can be phrased as a multivariable expansion
computation problem with fewer terms than in the original method. When
simulating a two-transmon entangling gate on a GPU, we find the Dyson and
Magnus-based solvers provide a speedup over traditional ODE solvers, ranging
from roughly $2\times$ to $4\times$ for a solution and $10\times$ to $60\times$
for a gradient, depending on solution accuracy.
Related papers
- Quantum-Inspired Fluid Simulation of 2D Turbulence with GPU Acceleration [0.894484621897981]
We study an algorithm for solving the Navier-Stokes equations using velocity as matrix product states.
Our adaptation speeds up simulations by up to 12.1 times.
We find that the algorithm has a potential advantage over direct numerical simulations in the turbulent regime.
arXiv Detail & Related papers (2024-06-25T10:31:20Z) - Efficient and practical Hamiltonian simulation from time-dependent product formulas [1.2534672170380357]
We propose an approach for implementing time-evolution of a quantum system using product formulas.
Our algorithms generate a decomposition of the evolution operator into a product of simple unitaries that are directly implementable on a quantum computer.
Although the theoretical scaling is suboptimal compared with state-of-the-art algorithms, the performance of the algorithms we propose is highly competitive in practice.
arXiv Detail & Related papers (2024-03-13T17:29:05Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
We introduce probabilistic unrolling, a method that combines Monte Carlo sampling with iterative linear solvers to circumvent matrix inversions.
Our theoretical analyses reveal that unrolling and backpropagation through the iterations of the solver can accelerate gradient estimation for maximum likelihood estimation.
In experiments on simulated and real data, we demonstrate that probabilistic unrolling learns latent Gaussian models up to an order of magnitude faster than gradient EM, with minimal losses in model performance.
arXiv Detail & Related papers (2023-06-05T21:08:34Z) - Sublinear scaling in non-Markovian open quantum systems simulations [0.0]
We introduce a numerically exact algorithm to calculate process tensors.
Our approach requires only $mathcalO(nlog n)$ singular value decompositions for environments with infinite memory.
arXiv Detail & Related papers (2023-04-11T15:40:33Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Simulating Markovian open quantum systems using higher-order series
expansion [1.713291434132985]
We present an efficient quantum algorithm for simulating the dynamics of Markovian open quantum systems.
Our algorithm is conceptually cleaner, and it only uses simple quantum primitives without compressed encoding.
arXiv Detail & Related papers (2022-12-05T06:02:50Z) - COSMIC: fast closed-form identification from large-scale data for LTV
systems [4.10464681051471]
We introduce a closed-form method for identification of discrete-time linear timevariant systems from data.
We develop an algorithm with guarantees of optimality and with a complexity that increases linearly with the number of instants considered per trajectory.
Our algorithm was applied to both a Low Fidelity and Functional Engineering Simulators for the Comet Interceptor mission.
arXiv Detail & Related papers (2021-12-08T16:07:59Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
We adapt an algorithm of Klivans and Meka based on the method of multiplicative weight updates.
The algorithm enjoys a sample complexity bound that is qualitatively similar to others in the literature.
It has a low runtime $O(mp2)$ in the case of $m$ samples and $p$ nodes, and can trivially be implemented in an online manner.
arXiv Detail & Related papers (2020-02-20T10:50:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.