Building Quantum Field Theories Out of Neurons
- URL: http://arxiv.org/abs/2112.04527v1
- Date: Wed, 8 Dec 2021 19:05:36 GMT
- Title: Building Quantum Field Theories Out of Neurons
- Authors: James Halverson
- Abstract summary: An approach to field theory is studied in which fields are comprised of $N$ constituent random neurons.
Gaussianity is exhibited at large-$N$, potentially explaining a feature of field theories in Nature.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An approach to field theory is studied in which fields are comprised of $N$
constituent random neurons. Gaussian theories arise in the infinite-$N$ limit
when neurons are independently distributed, via the Central Limit Theorem,
while interactions arise due to finite-$N$ effects or non-independently
distributed neurons. Euclidean-invariant ensembles of neurons are engineered,
with tunable two-point function, yielding families of Euclidean-invariant field
theories. Some Gaussian, Euclidean invariant theories are reflection positive,
which allows for analytic continuation to a Lorentz-invariant quantum field
theory. Examples are presented that yield dual theories at infinite-$N$, but
have different symmetries at finite-$N$. Landscapes of classical field
configurations are determined by local maxima of parameter distributions.
Predictions arise from mixed field-neuron correlators. Near-Gaussianity is
exhibited at large-$N$, potentially explaining a feature of field theories in
Nature.
Related papers
- Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Continuum limit of the Green function in scaled affine $\varphi^4_4$ quantum Euclidean covariant relativistic field theory [0.0]
We prove through path integral Monte Carlo computer experiments that the affine quantization of the $varphi_44$ scaled Euclidean covariant relativistic scalar field theory is a valid quantum field theory.
arXiv Detail & Related papers (2023-12-29T11:30:56Z) - Neural Network Field Theories: Non-Gaussianity, Actions, and Locality [0.0]
Both the path integral measure in field theory and ensembles of neural networks describe distributions over functions.
An expansion in $1/N$ corresponds to interactions in the field theory, but others, such as in a small breaking of the statistical independence of network parameters, can also lead to interacting theories.
arXiv Detail & Related papers (2023-07-06T18:00:01Z) - Connecting classical finite exchangeability to quantum theory [69.62715388742298]
Exchangeability is a fundamental concept in probability theory and statistics.
We show how a de Finetti-like representation theorem for finitely exchangeable sequences requires a mathematical representation which is formally equivalent to quantum theory.
arXiv Detail & Related papers (2023-06-06T17:15:19Z) - Correspondence between open bosonic systems and stochastic differential
equations [77.34726150561087]
We show that there can also be an exact correspondence at finite $n$ when the bosonic system is generalized to include interactions with the environment.
A particular system with the form of a discrete nonlinear Schr"odinger equation is analyzed in more detail.
arXiv Detail & Related papers (2023-02-03T19:17:37Z) - Nonperturbative renormalization for the neural network-QFT
correspondence [0.0]
We study the concepts of locality and power-counting in this context.
We provide an analysis in terms of the nonperturbative renormalization group using the Wetterich-Morris equation.
Our aim is to provide a useful formalism to investigate neural networks behavior beyond the large-width limit.
arXiv Detail & Related papers (2021-08-03T10:36:04Z) - $\PT$ Symmetry and Renormalisation in Quantum Field Theory [62.997667081978825]
Quantum systems governed by non-Hermitian Hamiltonians with $PT$ symmetry are special in having real energy eigenvalues bounded below and unitary time evolution.
We show how $PT$ symmetry may allow interpretations that evade ghosts and instabilities present in an interpretation of the theory within a Hermitian framework.
arXiv Detail & Related papers (2021-03-27T09:46:36Z) - Quantum field-theoretic machine learning [0.0]
We recast the $phi4$ scalar field theory as a machine learning algorithm within the mathematically rigorous framework of Markov random fields.
Neural networks are additionally derived from the $phi4$ theory which can be viewed as generalizations of conventional neural networks.
arXiv Detail & Related papers (2021-02-18T16:12:51Z) - Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We present a family of topological quantum gravity theories associated with the geometric theory of the Ricci flow.
First, we use BRST quantization to construct a "primitive" topological Lifshitz-type theory for only the spatial metric.
We extend the primitive theory by gauging foliation-preserving spacetime symmetries.
arXiv Detail & Related papers (2020-10-29T06:15:30Z) - Neural Networks and Quantum Field Theory [0.0]
We propose a theoretical understanding of neural networks in terms of Wilsonian effective field theory.
The correspondence relies on the fact that many neural networks are drawn from Gaussian processes.
arXiv Detail & Related papers (2020-08-19T18:00:06Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.