On Infinite Tensor Networks, Complementary Recovery and Type II Factors
- URL: http://arxiv.org/abs/2504.00096v1
- Date: Mon, 31 Mar 2025 18:00:09 GMT
- Title: On Infinite Tensor Networks, Complementary Recovery and Type II Factors
- Authors: Wissam Chemissany, Elliott Gesteau, Alexander Jahn, Daniel Murphy, Leo Shaposhnik,
- Abstract summary: We study local operator algebras at the boundary of infinite tensor networks.<n>We decompose the limiting Hilbert space and the algebras of observables in a way that keeps track of the entanglement in the network.
- Score: 39.58317527488534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We initiate a study of local operator algebras at the boundary of infinite tensor networks, using the mathematical theory of inductive limits. In particular, we consider tensor networks in which each layer acts as a quantum code with complementary recovery, a property that features prominently in the bulk-to-boundary maps intrinsic to holographic quantum error-correcting codes. In this case, we decompose the limiting Hilbert space and the algebras of observables in a way that keeps track of the entanglement in the network. As a specific example, we describe this inductive limit for the holographic HaPPY code model and relate its algebraic and error-correction features. We find that the local algebras in this model are given by the hyperfinite type II$_\infty$ factor. Next, we discuss other networks that build upon this framework and comment on a connection between type II factors and stabilizer circuits. We conclude with a discussion of MERA networks in which complementary recovery is broken. We argue that this breaking possibly permits a limiting type III von Neumann algebra, making them more suitable ans\"atze for approximating subregions of quantum field theories.
Related papers
- Heading towards an Algebraic Heisenberg Cut [0.0]
We show that early signs of macroscopic behaviour appear before infinity.<n>This lays the grounds for justifying the inclusion in quantum physics of the ITP formalism.
arXiv Detail & Related papers (2024-12-21T10:39:40Z) - Embezzlement of entanglement, quantum fields, and the classification of von Neumann algebras [41.94295877935867]
We study the quantum information theoretic task of embezzlement of entanglement in the setting of von Neumann algebras.
We quantify the performance of a given resource state by the worst-case error.
Our findings have implications for relativistic quantum field theory, where type III algebras naturally appear.
arXiv Detail & Related papers (2024-01-14T14:22:54Z) - Boundary algebras of the Kitaev Quantum Double model [0.0]
We prove the LTO axioms for Kitaev's Quantum Double model for a finite group $G$.
We identify the boundary nets of algebras with fusion categorical nets associated to $(mathsfHilb(G),mathbbC[G],$ or $(mathsfRep(G),mathbbCG)$ depending on whether the boundary cut is rough or smooth.
arXiv Detail & Related papers (2023-09-23T17:56:38Z) - Fermionic anyons: entanglement and quantum computation from a resource-theoretic perspective [39.58317527488534]
We develop a framework to characterize the separability of a specific type of one-dimensional quasiparticle known as a fermionic anyon.
We map this notion of fermionic-anyon separability to the free resources of matchgate circuits.
We also identify how entanglement between two qubits encoded in a dual-rail manner, as standard for matchgate circuits, corresponds to the notion of entanglement between fermionic anyons.
arXiv Detail & Related papers (2023-06-01T15:25:19Z) - Holographic Codes from Hyperinvariant Tensor Networks [70.31754291849292]
We show that a new class of exact holographic codes, extending the previously proposed hyperinvariant tensor networks into quantum codes, produce the correct boundary correlation functions.
This approach yields a dictionary between logical states in the bulk and the critical renormalization group flow of boundary states.
arXiv Detail & Related papers (2023-04-05T20:28:04Z) - A Functional-Space Mean-Field Theory of Partially-Trained Three-Layer
Neural Networks [49.870593940818715]
We study the infinite-width limit of a type of three-layer NN model whose first layer is random and fixed.
Our theory accommodates different scaling choices of the model, resulting in two regimes of the MF limit that demonstrate distinctive behaviors.
arXiv Detail & Related papers (2022-10-28T17:26:27Z) - Boundary and domain wall theories of 2d generalized quantum double model [1.3965477771846408]
The quantum double lattice realization of 2d topological orders based on Hopf algebras is discussed in this work.
To generalize the model to a 2d surface with boundaries and surface defects, we present a systematic construction of the boundary Hamiltonian and domain wall Hamiltonian.
arXiv Detail & Related papers (2022-07-08T15:44:47Z) - Construction and the ergodicity properties of dual unitary quantum
circuits [0.0]
We consider one dimensional quantum circuits of the type, where the fundamental quantum gate is dual unitary.
We review various existing constructions for dual unitary gates and we supplement them with new ideas in a number of cases.
A brief mathematical treatment of the recurrence time in such models is presented in the Appendix by Roland Bacher and Denis Serre.
arXiv Detail & Related papers (2022-01-19T18:09:34Z) - Annihilating Entanglement Between Cones [77.34726150561087]
We show that Lorentz cones are the only cones with a symmetric base for which a certain stronger version of the resilience property is satisfied.
Our proof exploits the symmetries of the Lorentz cones and applies two constructions resembling protocols for entanglement distillation.
arXiv Detail & Related papers (2021-10-22T15:02:39Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Scaling limits of lattice quantum fields by wavelets [62.997667081978825]
The renormalization group is considered as an inductive system of scaling maps between lattice field algebras.
We show that the inductive limit of free lattice ground states exists and the limit state extends to the familiar massive continuum free field.
arXiv Detail & Related papers (2020-10-21T16:30:06Z) - The holographic map as a conditional expectation [0.0]
We study the holographic map in AdS/CFT, as modeled by a quantum error correcting code with exact complementary recovery.
We show that the map is determined by local conditional expectations acting on the operator algebras of the boundary/physical Hilbert space.
arXiv Detail & Related papers (2020-08-11T16:04:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.