Prompt-based Zero-shot Relation Extraction with Semantic Knowledge
Augmentation
- URL: http://arxiv.org/abs/2112.04539v3
- Date: Fri, 1 Mar 2024 18:14:27 GMT
- Title: Prompt-based Zero-shot Relation Extraction with Semantic Knowledge
Augmentation
- Authors: Jiaying Gong and Hoda Eldardiry
- Abstract summary: In relation triplet extraction, recognizing unseen relations for which there are no training instances is a challenging task.
We propose a prompt-based model with semantic knowledge augmentation (ZS-SKA) to recognize unseen relations under the zero-shot setting.
- Score: 3.154631846975021
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In relation triplet extraction (RTE), recognizing unseen relations for which
there are no training instances is a challenging task. Efforts have been made
to recognize unseen relations based on question-answering models or relation
descriptions. However, these approaches miss the semantic information about
connections between seen and unseen relations. In this paper, We propose a
prompt-based model with semantic knowledge augmentation (ZS-SKA) to recognize
unseen relations under the zero-shot setting. We present a new word-level
analogy-based sentence translation rule and generate augmented instances with
unseen relations from instances with seen relations using that new rule. We
design prompts with weighted virtual label construction based on an external
knowledge graph to integrate semantic knowledge information learned from seen
relations. Instead of using the actual label sets in the prompt template, we
construct weighted virtual label words. We learn the representations of both
seen and unseen relations with augmented instances and prompts. We then
calculate the distance between the generated representations using prototypical
networks to predict unseen relations. Extensive experiments conducted on three
public datasets FewRel, Wiki-ZSL, and NYT, show that ZS-SKA outperforms other
methods under zero-shot setting. Results also demonstrate the effectiveness and
robustness of ZS-SKA.
Related papers
- Learning from Semi-Factuals: A Debiased and Semantic-Aware Framework for
Generalized Relation Discovery [12.716874398564482]
Generalized Relation Discovery (GRD) aims to identify unlabeled instances in existing pre-defined relations or discover novel relations.
We propose a novel framework, SFGRD, for this task by learning from semi-factuals in two stages.
SFGRD surpasses state-of-the-art models in terms of accuracy by 2.36% $sim$5.78% and cosine similarity by 32.19%$sim$ 84.45%.
arXiv Detail & Related papers (2024-01-12T02:38:55Z) - Open Set Relation Extraction via Unknown-Aware Training [72.10462476890784]
We propose an unknown-aware training method, regularizing the model by dynamically synthesizing negative instances.
Inspired by text adversarial attacks, we adaptively apply small but critical perturbations to original training instances.
Experimental results show that this method achieves SOTA unknown relation detection without compromising the classification of known relations.
arXiv Detail & Related papers (2023-06-08T05:45:25Z) - More than Classification: A Unified Framework for Event Temporal
Relation Extraction [61.44799147458621]
Event temporal relation extraction(ETRE) is usually formulated as a multi-label classification task.
We observe that all relations can be interpreted using the start and end time points of events.
We propose a unified event temporal relation extraction framework, which transforms temporal relations into logical expressions of time points.
arXiv Detail & Related papers (2023-05-28T02:09:08Z) - RelationPrompt: Leveraging Prompts to Generate Synthetic Data for
Zero-Shot Relation Triplet Extraction [65.4337085607711]
We introduce the task setting of Zero-Shot Relation Triplet Extraction (ZeroRTE)
Given an input sentence, each extracted triplet consists of the head entity, relation label, and tail entity where the relation label is not seen at the training stage.
We propose to synthesize relation examples by prompting language models to generate structured texts.
arXiv Detail & Related papers (2022-03-17T05:55:14Z) - MapRE: An Effective Semantic Mapping Approach for Low-resource Relation
Extraction [11.821464352959454]
We propose a framework considering both label-agnostic and label-aware semantic mapping information for low resource relation extraction.
We show that incorporating the above two types of mapping information in both pretraining and fine-tuning can significantly improve the model performance.
arXiv Detail & Related papers (2021-09-09T09:02:23Z) - ZS-BERT: Towards Zero-Shot Relation Extraction with Attribute
Representation Learning [10.609715843964263]
We formulate the zero-shot relation extraction problem by incorporating the text description of seen and unseen relations.
We propose a novel multi-task learning model, zero-shot BERT, to directly predict unseen relations without hand-crafted labeling and multiple pairwise attribute classifications.
Experiments conducted on two well-known datasets exhibit that ZS-BERT can outperform existing methods by at least 13.54% improvement on F1 score.
arXiv Detail & Related papers (2021-04-10T06:53:41Z) - Logic-guided Semantic Representation Learning for Zero-Shot Relation
Classification [31.887770824130957]
We propose a novel logic-guided semantic representation learning model for zero-shot relation classification.
Our approach builds connections between seen and unseen relations via implicit and explicit semantic representations with knowledge graph embeddings and logic rules.
arXiv Detail & Related papers (2020-10-30T04:30:09Z) - Learning to Decouple Relations: Few-Shot Relation Classification with
Entity-Guided Attention and Confusion-Aware Training [49.9995628166064]
We propose CTEG, a model equipped with two mechanisms to learn to decouple easily-confused relations.
On the one hand, an EGA mechanism is introduced to guide the attention to filter out information causing confusion.
On the other hand, a Confusion-Aware Training (CAT) method is proposed to explicitly learn to distinguish relations.
arXiv Detail & Related papers (2020-10-21T11:07:53Z) - Leveraging Semantic Parsing for Relation Linking over Knowledge Bases [80.99588366232075]
We present SLING, a relation linking framework which leverages semantic parsing using AMR and distant supervision.
SLING integrates multiple relation linking approaches that capture complementary signals such as linguistic cues, rich semantic representation, and information from the knowledgebase.
experiments on relation linking using three KBQA datasets; QALD-7, QALD-9, and LC-QuAD 1.0 demonstrate that the proposed approach achieves state-of-the-art performance on all benchmarks.
arXiv Detail & Related papers (2020-09-16T14:56:11Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
We consider a novel formulation, zero-shot learning, to free this cumbersome curation.
For newly-added relations, we attempt to learn their semantic features from their text descriptions.
We leverage Generative Adrial Networks (GANs) to establish the connection between text and knowledge graph domain.
arXiv Detail & Related papers (2020-01-08T01:19:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.