One-dimensional Deep Low-rank and Sparse Network for Accelerated MRI
- URL: http://arxiv.org/abs/2112.04721v1
- Date: Thu, 9 Dec 2021 06:39:55 GMT
- Title: One-dimensional Deep Low-rank and Sparse Network for Accelerated MRI
- Authors: Zi Wang, Chen Qian, Di Guo, Hongwei Sun, Rushuai Li, Bo Zhao, Xiaobo
Qu
- Abstract summary: Deep learning has shown astonishing performance in accelerated magnetic resonance imaging (MRI)
Most state-of-the-art deep learning reconstructions adopt the powerful convolutional neural network and perform 2D convolution.
We present a new approach that explores the 1D convolution, making the deep network much easier to be trained and generalized.
- Score: 19.942978606567547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has shown astonishing performance in accelerated magnetic
resonance imaging (MRI). Most state-of-the-art deep learning reconstructions
adopt the powerful convolutional neural network and perform 2D convolution
since many magnetic resonance images or their corresponding k-space are in 2D.
In this work, we present a new approach that explores the 1D convolution,
making the deep network much easier to be trained and generalized. We further
integrate the 1D convolution into the proposed deep network, named as
One-dimensional Deep Low-rank and Sparse network (ODLS), which unrolls the
iteration procedure of a low-rank and sparse reconstruction model. Extensive
results on in vivo knee and brain datasets demonstrate that, the proposed ODLS
is very suitable for the case of limited training subjects and provides
improved reconstruction performance than state-of-the-art methods both visually
and quantitatively. Additionally, ODLS also shows nice robustness to different
undersampling scenarios and some mismatches between the training and test data.
In summary, our work demonstrates that the 1D deep learning scheme is
memory-efficient and robust in fast MRI.
Related papers
- Deep Separable Spatiotemporal Learning for Fast Dynamic Cardiac MRI [22.7085949508143]
MRI plays an indispensable role in cardiac diagnosis. To enable fast imaging, the k-space data can be undersampled.
This challenge necessitates extensive training data in deep learning reconstruction methods.
We propose a novel and efficient approach, leveraging a dimension separable learning scheme that can perform exceptionally well even with highly limited training data.
arXiv Detail & Related papers (2024-02-24T23:56:15Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Deep Cardiac MRI Reconstruction with ADMM [7.694990352622926]
We present a deep learning (DL)-based method for accelerated cine and multi-contrast reconstruction in the context of cardiac imaging.
Our method optimize in both the image and k-space domains, allowing for high reconstruction fidelity.
arXiv Detail & Related papers (2023-10-10T13:46:11Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - Two-Stage Self-Supervised Cycle-Consistency Network for Reconstruction
of Thin-Slice MR Images [62.4428833931443]
The thick-slice magnetic resonance (MR) images are often structurally blurred in coronal and sagittal views.
Deep learning has shown great potential to re-construct the high-resolution (HR) thin-slice MR images from those low-resolution (LR) cases.
We propose a novel Two-stage Self-supervised Cycle-consistency Network (TSCNet) for MR slice reconstruction.
arXiv Detail & Related papers (2021-06-29T13:29:18Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
Recent deep learning-based methods for MR image reconstruction usually leverage a generic auto-encoder architecture.
We propose an Over-and-Under Complete Convolu?tional Recurrent Neural Network (OUCR), which consists of an overcomplete and an undercomplete Convolutional Recurrent Neural Network(CRNN)
The proposed method achieves significant improvements over the compressed sensing and popular deep learning-based methods with less number of trainable parameters.
arXiv Detail & Related papers (2021-06-16T15:56:34Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - Unsupervised MRI Reconstruction with Generative Adversarial Networks [14.253509181850502]
We present a deep learning framework for MRI reconstruction without any fully-sampled data using generative adversarial networks.
We test the proposed method in two scenarios: retrospectively undersampled fast spin echo knee exams and prospectively undersampled abdominal DCE.
arXiv Detail & Related papers (2020-08-29T22:00:49Z) - Deep Low-rank Prior in Dynamic MR Imaging [30.70648993986445]
We introduce two novel schemes to introduce the learnable low-rank prior into deep network architectures.
In the unrolling manner, we put forward a model-based unrolling sparse and low-rank network for dynamic MR imaging, dubbed SLR-Net.
In the plug-and-play manner, we present a plug-and-play LR network module that can be easily embedded into any other dynamic MR neural networks.
arXiv Detail & Related papers (2020-06-22T09:26:10Z) - Deep Residual Dense U-Net for Resolution Enhancement in Accelerated MRI
Acquisition [19.422926534305837]
We propose a deep-learning approach, aiming at reconstructing high-quality images from accelerated MRI acquisition.
Specifically, we use Convolutional Neural Network (CNN) to learn the differences between the aliased images and the original images.
Considering the peculiarity of the down-sampled k-space data, we introduce a new term to the loss function in learning, which effectively employs the given k-space data.
arXiv Detail & Related papers (2020-01-13T19:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.