Generalized Adiabatic Impulse Approximation
- URL: http://arxiv.org/abs/2112.04739v2
- Date: Fri, 10 Dec 2021 04:32:46 GMT
- Title: Generalized Adiabatic Impulse Approximation
- Authors: Takayuki Suzuki, Hiromichi Nakazato
- Abstract summary: We extend the adiabatic impulse approximation to multilevel systems.
We analyze the dynamics of the Landau-Zener grid model and the multilevel Landau-Zener-St"uckelberg-Majorana interference model.
- Score: 0.7310043452300736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-adiabatic transitions in multilevel systems appear in various fields of
physics, but it is not easy to analyze their dynamics in general. In this
paper, we propose to extend the adiabatic impulse approximation to multilevel
systems. This approximation method is shown to be equivalent to a series of
unitary evolutions and facilitates to evaluate the dynamics numerically. In
particular, we analyze the dynamics of the Landau-Zener grid model and the
multilevel Landau-Zener-St\"uckelberg-Majorana interference model, and confirm
that the results are in good agreement with the exact dynamics evaluated
numerically. We also derive the conditions for destructive interference to
occur in the multilevel system.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Dynamically Emergent Quantum Thermodynamics: Non-Markovian Otto Cycle [49.1574468325115]
We revisit the thermodynamic behavior of the quantum Otto cycle with a focus on memory effects and strong system-bath couplings.
Our investigation is based on an exact treatment of non-Markovianity by means of an exact quantum master equation.
arXiv Detail & Related papers (2023-08-18T11:00:32Z) - About the performance of perturbative treatments of the spin-boson
dynamics within the hierarchical equations of motion approach [7.573209631509984]
We show that FP-HEOM can be systematically employed to investigate higher-order master equations.
We focus on the challenging scenario of the spin-boson problem with a sub-Ohmic spectral distribution at zero temperature.
We compare the memory kernel for population dynamics obtained from the exact FP-HEOM dynamics with that of the approximate NIBA.
arXiv Detail & Related papers (2023-08-03T20:01:40Z) - Hierarchical hydrodynamics in long-range multipole-conserving systems [0.0]
We introduce a hierarchical sequence of multipole-conserving models characterized by power-law decaying couplings.
We examine the late-time hydrodynamics analytically and numerically using an effective classical framework.
We extend our findings to higher dimensions and explore the emergence of long-time scales in systems with low charge density.
arXiv Detail & Related papers (2023-04-24T18:00:01Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Spreading of a local excitation in a Quantum Hierarchical Model [62.997667081978825]
We study the dynamics of the quantum Dyson hierarchical model in its paramagnetic phase.
An initial state made by a local excitation of the paramagnetic ground state is considered.
A localization mechanism is found and the excitation remains close to its initial position at arbitrary times.
arXiv Detail & Related papers (2022-07-14T10:05:20Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Generalized Discrete Truncated Wigner Approximation for Nonadiabtic
Quantum-Classical Dynamics [0.0]
We introduce a linearized semiclassical method, the generalized discrete truncated Wigner approximation (GDTWA)
GDTWA samples the electron degrees of freedom in a discrete phase space, and forbids an unphysical growth of electronic state populations.
Our results suggest that the method can be very adequate to treat challenging nonadiabatic dynamics problems in chemistry and related fields.
arXiv Detail & Related papers (2021-04-14T21:53:35Z) - Dynamical hysteresis properties of the driven-dissipative Bose-Hubbard
model with a Gutzwiller Monte Carlo approach [0.0]
We study the dynamical properties of a driven-dissipative Bose-Hubbard model in the strongly interacting regime.
We take classical and quantum correlations into account.
We show that approximation techniques relying on a unimodal distribution such as the mean field and $1/z$ expansion drastically underestimate the particle number fluctuations.
arXiv Detail & Related papers (2020-08-17T13:50:10Z) - Memory-Critical Dynamical Buildup of Phonon-Dressed Majorana Fermions [72.46695228124449]
We study a one-dimensional polaronic topological superconductor with phonon-dressed $p$-wave pairing.
We show that when the memory depth increases, the Majorana edge dynamics transits from relaxing monotonically to a plateau of substantial value into a collapse-and-buildup behavior.
arXiv Detail & Related papers (2020-06-24T07:32:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.