Dynamical hysteresis properties of the driven-dissipative Bose-Hubbard
model with a Gutzwiller Monte Carlo approach
- URL: http://arxiv.org/abs/2008.07316v1
- Date: Mon, 17 Aug 2020 13:50:10 GMT
- Title: Dynamical hysteresis properties of the driven-dissipative Bose-Hubbard
model with a Gutzwiller Monte Carlo approach
- Authors: Dolf Huybrechts and Michiel Wouters
- Abstract summary: We study the dynamical properties of a driven-dissipative Bose-Hubbard model in the strongly interacting regime.
We take classical and quantum correlations into account.
We show that approximation techniques relying on a unimodal distribution such as the mean field and $1/z$ expansion drastically underestimate the particle number fluctuations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the dynamical properties of a driven-dissipative Bose-Hubbard model
in the strongly interacting regime through a quantum trajectory approach with a
cluster-Gutzwiller Ansatz for the wave function. This allows us to take
classical and quantum correlations into account. By studying the dynamical
hysteresis surface that arises by sweeping through the coherent driving
strength we show that the phase diagram for this system is in qualitative
correspondence with the Gutzwiller mean-field result. However, quantitative
differences are present and the inclusion of classical and quantum correlations
causes a significant shift of the critical parameters. Additionally, we show
that approximation techniques relying on a unimodal distribution such as the
mean field and $1/z$ expansion drastically underestimate the particle number
fluctuations. Finally, we show that a proposed mapping of the
driven-dissipative many-body Bose-Hubbard model onto a single
driven-dissipative Kerr model is not accurate for parameters in the hysteresis
regime.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - Statistical and dynamical aspects of quantum chaos in a kicked Bose-Hubbard dimer [7.737485570054659]
We study a kicked two-site Bose-Hubbard model (Bose-Hubbard dimer) with the on-site potential difference being periodically modulated.
By analyzing spectral statistics of Floquet operator, we unveil that the system undergoes a transition from regularity to chaos with increasing the interaction strength.
The semiclassical analysis also suggests that the system in chaotic regime may display different dynamical behavior depending on the choice of initial states.
arXiv Detail & Related papers (2023-12-13T14:10:54Z) - Hybrid Quantum-Classical Stochastic Approach to Spin-Boson Models [0.0]
We present an exact hybrid quantum-classical approach to different spin-boson models.
We argue that an intrinsic nonlinearity of bosonic modes can be tackled within this framework.
arXiv Detail & Related papers (2023-09-20T18:00:05Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Spin-boson model under dephasing: Markovian vs Non-Markovian dynamics [0.0]
We show that the characteristic frequency of the spin dynamics changes in a simple fashion with dephasing.
Our findings are relevant to quantum simulation of the spin-boson model in the regime of strong coupling in trapped ions and circuit QED architectures.
arXiv Detail & Related papers (2023-04-28T22:07:29Z) - Completely Positive Map for Noisy Driven Quantum Systems Derived by
Keldysh Expansion [39.58317527488534]
We introduce a decoherence model based on the Keldysh formalism.
This formalism allows us to include non-periodic drives and correlated quantum noise in our model.
We demonstrate that this strategy generates pulses that mitigate correlated quantum noise in qubit state-transfer and gate operations.
arXiv Detail & Related papers (2023-03-20T23:05:24Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Onset of non-Gaussian quantum physics in pulsed squeezing with
mesoscopic fields [1.2252572522254723]
We study the emergence of non-Gaussian quantum features in pulsed squeezed light generation with a mesoscopic number of pump photons.
We argue that the state of the art in nonlinear nanophotonics is quickly approaching this regime.
arXiv Detail & Related papers (2021-11-27T02:49:10Z) - Non-Markovianity of Quantum Brownian Motion [0.0]
We study quantum non-Markovian dynamics of the Caldeira-Leggett model, a prototypical model for quantum Brownian motion.
A comparison of our results with the corresponding results for the spin-boson problem show a remarkable similarity in the structure of non-Markovian behavior of the two paradigmatic models.
arXiv Detail & Related papers (2020-07-06T16:35:09Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.