Multimodal Fake News Detection
- URL: http://arxiv.org/abs/2112.04831v1
- Date: Thu, 9 Dec 2021 10:57:18 GMT
- Title: Multimodal Fake News Detection
- Authors: Santiago Alonso-Bartolome, Isabel Segura-Bedmar
- Abstract summary: We perform a fine-grained classification of fake news on the Fakeddit dataset using both unimodal and multimodal approaches.
Some fake news categories such as Manipulated content, Satire or False connection strongly benefit from the use of images.
Using images also improves the results of the other categories, but with less impact.
- Score: 1.929039244357139
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Over the last years, there has been an unprecedented proliferation of fake
news. As a consequence, we are more susceptible to the pernicious impact that
misinformation and disinformation spreading can have in different segments of
our society. Thus, the development of tools for automatic detection of fake
news plays and important role in the prevention of its negative effects. Most
attempts to detect and classify false content focus only on using textual
information. Multimodal approaches are less frequent and they typically
classify news either as true or fake. In this work, we perform a fine-grained
classification of fake news on the Fakeddit dataset, using both unimodal and
multimodal approaches. Our experiments show that the multimodal approach based
on a Convolutional Neural Network (CNN) architecture combining text and image
data achieves the best results, with an accuracy of 87%. Some fake news
categories such as Manipulated content, Satire or False connection strongly
benefit from the use of images. Using images also improves the results of the
other categories, but with less impact. Regarding the unimodal approaches using
only text, Bidirectional Encoder Representations from Transformers (BERT) is
the best model with an accuracy of 78%. Therefore, exploiting both text and
image data significantly improves the performance of fake news detection.
Related papers
- FineFake: A Knowledge-Enriched Dataset for Fine-Grained Multi-Domain Fake News Detection [54.37159298632628]
FineFake is a multi-domain knowledge-enhanced benchmark for fake news detection.
FineFake encompasses 16,909 data samples spanning six semantic topics and eight platforms.
The entire FineFake project is publicly accessible as an open-source repository.
arXiv Detail & Related papers (2024-03-30T14:39:09Z) - Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
We study the interplay between machine-(paraphrased) real news, machine-generated fake news, human-written fake news, and human-written real news.
Our experiments reveal an interesting pattern that detectors trained exclusively on human-written articles can indeed perform well at detecting machine-generated fake news, but not vice versa.
arXiv Detail & Related papers (2023-11-02T08:39:45Z) - TieFake: Title-Text Similarity and Emotion-Aware Fake News Detection [15.386007761649251]
We propose a novel Title-Text similarity and emotion-aware Fake news detection (TieFake) method by jointly modeling the multi-modal context information and the author sentiment.
Specifically, we employ BERT and ResNeSt to learn the representations for text and images, and utilize publisher emotion extractor to capture the author's subjective emotion in the news content.
arXiv Detail & Related papers (2023-04-19T04:47:36Z) - It's All in the Embedding! Fake News Detection Using Document Embeddings [0.6091702876917281]
We propose a new approach that uses document embeddings to build multiple models that accurately label news articles as reliable or fake.
We also present a benchmark on different architectures that detect fake news using binary or multi-labeled classification.
arXiv Detail & Related papers (2023-04-16T13:30:06Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
We propose to leverage a hypergraph to represent group-wise interaction among news, while focusing on important news relations with its dual-level attention mechanism.
Our approach yields remarkable performance and maintains the high performance even with a small subset of labeled news data.
arXiv Detail & Related papers (2022-12-24T00:19:32Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverse is a new feature based on multilingual evidence that can be used for fake news detection.
The hypothesis of the usage of cross-lingual evidence as a feature for fake news detection is confirmed.
arXiv Detail & Related papers (2022-11-25T18:24:17Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
We propose a novel framework for generating training examples informed by the known styles and strategies of human-authored propaganda.
Specifically, we perform self-critical sequence training guided by natural language inference to ensure the validity of the generated articles.
Our experimental results show that fake news detectors trained on PropaNews are better at detecting human-written disinformation by 3.62 - 7.69% F1 score on two public datasets.
arXiv Detail & Related papers (2022-03-10T14:24:19Z) - FNR: A Similarity and Transformer-Based Approachto Detect Multi-Modal
FakeNews in Social Media [4.607964446694258]
This work aims to analyze multi-modal features from texts and images in social media for detecting fake news.
We propose a Fake News Revealer (FNR) method that utilizes transform learning to extract contextual and semantic features.
The results show the proposed method achieves higher accuracies in detecting fake news compared to the previous works.
arXiv Detail & Related papers (2021-12-02T11:12:09Z) - Explainable Tsetlin Machine framework for fake news detection with
credibility score assessment [16.457778420360537]
We propose a novel interpretable fake news detection framework based on the recently introduced Tsetlin Machine (TM)
We use the conjunctive clauses of the TM to capture lexical and semantic properties of both true and fake news text.
For evaluation, we conduct experiments on two publicly available datasets, PolitiFact and GossipCop, and demonstrate that the TM framework significantly outperforms previously published baselines by at least $5%$ in terms of accuracy.
arXiv Detail & Related papers (2021-05-19T13:18:02Z) - User Preference-aware Fake News Detection [61.86175081368782]
Existing fake news detection algorithms focus on mining news content for deceptive signals.
We propose a new framework, UPFD, which simultaneously captures various signals from user preferences by joint content and graph modeling.
arXiv Detail & Related papers (2021-04-25T21:19:24Z) - Multimodal Fusion with BERT and Attention Mechanism for Fake News
Detection [0.0]
We present a novel method for detecting fake news by fusing multimodal features derived from textual and visual data.
Experimental results showed that our approach performs better than the current state-of-the-art method on a public Twitter dataset by 3.1% accuracy.
arXiv Detail & Related papers (2021-04-23T08:47:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.