Each Fake News is Fake in its Own Way: An Attribution Multi-Granularity Benchmark for Multimodal Fake News Detection
- URL: http://arxiv.org/abs/2412.14686v1
- Date: Thu, 19 Dec 2024 09:40:17 GMT
- Title: Each Fake News is Fake in its Own Way: An Attribution Multi-Granularity Benchmark for Multimodal Fake News Detection
- Authors: Hao Guo, Zihan Ma, Zhi Zeng, Minnan Luo, Weixin Zeng, Jiuyang Tang, Xiang Zhao,
- Abstract summary: Social platforms have become saturated with a plethora of fake news, resulting in negative consequences.
Existing multimodal fake news datasets only provide binary labels of real or fake.
We construct an attributing multi-granularity multimodal fake news detection dataset amg, revealing the inherent fake pattern.
- Score: 18.466087573842405
- License:
- Abstract: Social platforms, while facilitating access to information, have also become saturated with a plethora of fake news, resulting in negative consequences. Automatic multimodal fake news detection is a worthwhile pursuit. Existing multimodal fake news datasets only provide binary labels of real or fake. However, real news is alike, while each fake news is fake in its own way. These datasets fail to reflect the mixed nature of various types of multimodal fake news. To bridge the gap, we construct an attributing multi-granularity multimodal fake news detection dataset \amg, revealing the inherent fake pattern. Furthermore, we propose a multi-granularity clue alignment model \our to achieve multimodal fake news detection and attribution. Experimental results demonstrate that \amg is a challenging dataset, and its attribution setting opens up new avenues for future research.
Related papers
- FineFake: A Knowledge-Enriched Dataset for Fine-Grained Multi-Domain Fake News Detection [54.37159298632628]
FineFake is a multi-domain knowledge-enhanced benchmark for fake news detection.
FineFake encompasses 16,909 data samples spanning six semantic topics and eight platforms.
The entire FineFake project is publicly accessible as an open-source repository.
arXiv Detail & Related papers (2024-03-30T14:39:09Z) - MCFEND: A Multi-source Benchmark Dataset for Chinese Fake News Detection [5.288018460787191]
Methods trained on purely one single news source can hardly be applicable to real-world scenarios.
We constructed the first multi-source benchmark dataset for Chinese fake news detection, termed MCFEND.
MCFEND, as a benchmark dataset, aims to advance Chinese fake news detection approaches in real-world scenarios.
arXiv Detail & Related papers (2024-03-14T04:32:13Z) - Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
We study the interplay between machine-(paraphrased) real news, machine-generated fake news, human-written fake news, and human-written real news.
Our experiments reveal an interesting pattern that detectors trained exclusively on human-written articles can indeed perform well at detecting machine-generated fake news, but not vice versa.
arXiv Detail & Related papers (2023-11-02T08:39:45Z) - Unsupervised Domain-agnostic Fake News Detection using Multi-modal Weak
Signals [19.22829945777267]
This work proposes an effective framework for unsupervised fake news detection, which first embeds the knowledge available in four modalities in news records.
Also, we propose a novel technique to construct news datasets minimizing the latent biases in existing news datasets.
We trained the proposed unsupervised framework using LUND-COVID to exploit the potential of large datasets.
arXiv Detail & Related papers (2023-05-18T23:49:31Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
We propose to leverage a hypergraph to represent group-wise interaction among news, while focusing on important news relations with its dual-level attention mechanism.
Our approach yields remarkable performance and maintains the high performance even with a small subset of labeled news data.
arXiv Detail & Related papers (2022-12-24T00:19:32Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverse is a new feature based on multilingual evidence that can be used for fake news detection.
The hypothesis of the usage of cross-lingual evidence as a feature for fake news detection is confirmed.
arXiv Detail & Related papers (2022-11-25T18:24:17Z) - A Multi-Policy Framework for Deep Learning-Based Fake News Detection [0.31498833540989407]
This work introduces Multi-Policy Statement Checker (MPSC), a framework that automates fake news detection.
MPSC uses deep learning techniques to analyze a statement itself and its related news articles, predicting whether it is seemingly credible or suspicious.
arXiv Detail & Related papers (2022-06-01T21:25:21Z) - Multimodal Fake News Detection [1.929039244357139]
We perform a fine-grained classification of fake news on the Fakeddit dataset using both unimodal and multimodal approaches.
Some fake news categories such as Manipulated content, Satire or False connection strongly benefit from the use of images.
Using images also improves the results of the other categories, but with less impact.
arXiv Detail & Related papers (2021-12-09T10:57:18Z) - User Preference-aware Fake News Detection [61.86175081368782]
Existing fake news detection algorithms focus on mining news content for deceptive signals.
We propose a new framework, UPFD, which simultaneously captures various signals from user preferences by joint content and graph modeling.
arXiv Detail & Related papers (2021-04-25T21:19:24Z) - How does Truth Evolve into Fake News? An Empirical Study of Fake News
Evolution [55.27685924751459]
We present the Fake News Evolution dataset: a new dataset tracking the fake news evolution process.
Our dataset is composed of 950 paired data, each of which consists of articles representing the truth, the fake news, and the evolved fake news.
We observe the features during the evolution and they are the disinformation techniques, text similarity, top 10 keywords, classification accuracy, parts of speech, and sentiment properties.
arXiv Detail & Related papers (2021-03-10T09:01:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.