PARL: Enhancing Diversity of Ensemble Networks to Resist Adversarial
Attacks via Pairwise Adversarially Robust Loss Function
- URL: http://arxiv.org/abs/2112.04948v1
- Date: Thu, 9 Dec 2021 14:26:13 GMT
- Title: PARL: Enhancing Diversity of Ensemble Networks to Resist Adversarial
Attacks via Pairwise Adversarially Robust Loss Function
- Authors: Manaar Alam, Shubhajit Datta, Debdeep Mukhopadhyay, Arijit Mondal,
Partha Pratim Chakrabarti
- Abstract summary: adversarial attacks tend to rely on the principle of transferability.
Ensemble methods against adversarial attacks demonstrate that an adversarial example is less likely to mislead multiple classifiers.
Recent ensemble methods have either been shown to be vulnerable to stronger adversaries or shown to lack an end-to-end evaluation.
- Score: 13.417003144007156
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The security of Deep Learning classifiers is a critical field of study
because of the existence of adversarial attacks. Such attacks usually rely on
the principle of transferability, where an adversarial example crafted on a
surrogate classifier tends to mislead the target classifier trained on the same
dataset even if both classifiers have quite different architecture. Ensemble
methods against adversarial attacks demonstrate that an adversarial example is
less likely to mislead multiple classifiers in an ensemble having diverse
decision boundaries. However, recent ensemble methods have either been shown to
be vulnerable to stronger adversaries or shown to lack an end-to-end
evaluation. This paper attempts to develop a new ensemble methodology that
constructs multiple diverse classifiers using a Pairwise Adversarially Robust
Loss (PARL) function during the training procedure. PARL utilizes gradients of
each layer with respect to input in every classifier within the ensemble
simultaneously. The proposed training procedure enables PARL to achieve higher
robustness against black-box transfer attacks compared to previous ensemble
methods without adversely affecting the accuracy of clean examples. We also
evaluate the robustness in the presence of white-box attacks, where adversarial
examples are crafted using parameters of the target classifier. We present
extensive experiments using standard image classification datasets like
CIFAR-10 and CIFAR-100 trained using standard ResNet20 classifier against
state-of-the-art adversarial attacks to demonstrate the robustness of the
proposed ensemble methodology.
Related papers
- Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - Understanding and Improving Ensemble Adversarial Defense [4.504026914523449]
We develop a new error theory dedicated to understanding ensemble adversarial defense.
We propose an effective approach to improve ensemble adversarial defense, named interactive global adversarial training (iGAT)
iGAT is capable of boosting their performance by increases up to 17% evaluated using CIFAR10 and CIFAR100 datasets under both white-box and black-box attacks.
arXiv Detail & Related papers (2023-10-27T20:43:29Z) - Carefully Blending Adversarial Training, Purification, and Aggregation Improves Adversarial Robustness [1.2289361708127877]
CARSO is able to defend itself against adaptive end-to-end white-box attacks devised for defences.
Our method improves by a significant margin the state-of-the-art for Cifar-10, Cifar-100, and TinyImageNet-200.
arXiv Detail & Related papers (2023-05-25T09:04:31Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
Deep learning systems are vulnerable to crafted adversarial examples, which may be imperceptible to the human eye, but can lead the model to misclassify.
We develop a new ensemble-based solution that constructs defender models with diverse decision boundaries with respect to the original model.
We present extensive experimentations using standard image classification datasets, namely MNIST, CIFAR-10 and CIFAR-100 against state-of-the-art adversarial attacks.
arXiv Detail & Related papers (2022-08-18T08:19:26Z) - Robustness through Cognitive Dissociation Mitigation in Contrastive
Adversarial Training [2.538209532048867]
We introduce a novel neural network training framework that increases model's adversarial robustness to adversarial attacks.
We propose to improve model robustness to adversarial attacks by learning feature representations consistent under both data augmentations and adversarial perturbations.
We validate our method on the CIFAR-10 dataset on which it outperforms both robust accuracy and clean accuracy over alternative supervised and self-supervised adversarial learning methods.
arXiv Detail & Related papers (2022-03-16T21:41:27Z) - Towards Compositional Adversarial Robustness: Generalizing Adversarial
Training to Composite Semantic Perturbations [70.05004034081377]
We first propose a novel method for generating composite adversarial examples.
Our method can find the optimal attack composition by utilizing component-wise projected gradient descent.
We then propose generalized adversarial training (GAT) to extend model robustness from $ell_p$-ball to composite semantic perturbations.
arXiv Detail & Related papers (2022-02-09T02:41:56Z) - Improved Certified Defenses against Data Poisoning with (Deterministic)
Finite Aggregation [122.83280749890078]
We propose an improved certified defense against general poisoning attacks, namely Finite Aggregation.
In contrast to DPA, which directly splits the training set into disjoint subsets, our method first splits the training set into smaller disjoint subsets.
We offer an alternative view of our method, bridging the designs of deterministic and aggregation-based certified defenses.
arXiv Detail & Related papers (2022-02-05T20:08:58Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
We study a conceptually simple approach to defend few-shot classifiers against adversarial attacks.
We propose a simple attack-agnostic detection method, using the concept of self-similarity and filtering.
Our evaluation on the miniImagenet (MI) and CUB datasets exhibit good attack detection performance.
arXiv Detail & Related papers (2021-10-24T05:46:03Z) - ATRO: Adversarial Training with a Rejection Option [10.36668157679368]
This paper proposes a classification framework with a rejection option to mitigate the performance deterioration caused by adversarial examples.
Applying the adversarial training objective to both a classifier and a rejection function simultaneously, we can choose to abstain from classification when it has insufficient confidence to classify a test data point.
arXiv Detail & Related papers (2020-10-24T14:05:03Z) - Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic
Segmentation [79.42338812621874]
Adversarial training is promising for improving robustness of deep neural networks towards adversarial perturbations.
We formulate a general adversarial training procedure that can perform decently on both adversarial and clean samples.
We propose a dynamic divide-and-conquer adversarial training (DDC-AT) strategy to enhance the defense effect.
arXiv Detail & Related papers (2020-03-14T05:06:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.