Guardian of the Ensembles: Introducing Pairwise Adversarially Robust Loss for Resisting Adversarial Attacks in DNN Ensembles
- URL: http://arxiv.org/abs/2112.04948v2
- Date: Tue, 03 Dec 2024 07:00:13 GMT
- Title: Guardian of the Ensembles: Introducing Pairwise Adversarially Robust Loss for Resisting Adversarial Attacks in DNN Ensembles
- Authors: Shubhi Shukla, Subhadeep Dalui, Manaar Alam, Shubhajit Datta, Arijit Mondal, Debdeep Mukhopadhyay, Partha Pratim Chakrabarti,
- Abstract summary: Adrial attacks rely on transferability.
Recent ensemble methods demonstrate that AEs are less likely to mislead multiple classifiers in an ensemble.
This paper proposes a new ensemble training using a Pairwise Adversariversaally Robust Loss (PARL)
- Score: 11.058367494534123
- License:
- Abstract: Adversarial attacks rely on transferability, where an adversarial example (AE) crafted on a surrogate classifier tends to mislead a target classifier. Recent ensemble methods demonstrate that AEs are less likely to mislead multiple classifiers in an ensemble. This paper proposes a new ensemble training using a Pairwise Adversarially Robust Loss (PARL) that by construction produces an ensemble of classifiers with diverse decision boundaries. PARL utilizes outputs and gradients of each layer with respect to network parameters in every classifier within the ensemble simultaneously. PARL is demonstrated to achieve higher robustness against black-box transfer attacks than previous ensemble methods as well as adversarial training without adversely affecting clean example accuracy. Extensive experiments using standard Resnet20, WideResnet28-10 classifiers demonstrate the robustness of PARL against state-of-the-art adversarial attacks. While maintaining similar clean accuracy and lesser training time, the proposed architecture has a 24.8% increase in robust accuracy ($\epsilon$ = 0.07) from the state-of-the art method.
Related papers
- Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - Understanding and Improving Ensemble Adversarial Defense [4.504026914523449]
We develop a new error theory dedicated to understanding ensemble adversarial defense.
We propose an effective approach to improve ensemble adversarial defense, named interactive global adversarial training (iGAT)
iGAT is capable of boosting their performance by increases up to 17% evaluated using CIFAR10 and CIFAR100 datasets under both white-box and black-box attacks.
arXiv Detail & Related papers (2023-10-27T20:43:29Z) - Carefully Blending Adversarial Training, Purification, and Aggregation Improves Adversarial Robustness [1.2289361708127877]
CARSO is able to defend itself against adaptive end-to-end white-box attacks devised for defences.
Our method improves by a significant margin the state-of-the-art for Cifar-10, Cifar-100, and TinyImageNet-200.
arXiv Detail & Related papers (2023-05-25T09:04:31Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - Resisting Adversarial Attacks in Deep Neural Networks using Diverse
Decision Boundaries [12.312877365123267]
Deep learning systems are vulnerable to crafted adversarial examples, which may be imperceptible to the human eye, but can lead the model to misclassify.
We develop a new ensemble-based solution that constructs defender models with diverse decision boundaries with respect to the original model.
We present extensive experimentations using standard image classification datasets, namely MNIST, CIFAR-10 and CIFAR-100 against state-of-the-art adversarial attacks.
arXiv Detail & Related papers (2022-08-18T08:19:26Z) - Robustness through Cognitive Dissociation Mitigation in Contrastive
Adversarial Training [2.538209532048867]
We introduce a novel neural network training framework that increases model's adversarial robustness to adversarial attacks.
We propose to improve model robustness to adversarial attacks by learning feature representations consistent under both data augmentations and adversarial perturbations.
We validate our method on the CIFAR-10 dataset on which it outperforms both robust accuracy and clean accuracy over alternative supervised and self-supervised adversarial learning methods.
arXiv Detail & Related papers (2022-03-16T21:41:27Z) - Towards Compositional Adversarial Robustness: Generalizing Adversarial
Training to Composite Semantic Perturbations [70.05004034081377]
We first propose a novel method for generating composite adversarial examples.
Our method can find the optimal attack composition by utilizing component-wise projected gradient descent.
We then propose generalized adversarial training (GAT) to extend model robustness from $ell_p$-ball to composite semantic perturbations.
arXiv Detail & Related papers (2022-02-09T02:41:56Z) - Improved Certified Defenses against Data Poisoning with (Deterministic)
Finite Aggregation [122.83280749890078]
We propose an improved certified defense against general poisoning attacks, namely Finite Aggregation.
In contrast to DPA, which directly splits the training set into disjoint subsets, our method first splits the training set into smaller disjoint subsets.
We offer an alternative view of our method, bridging the designs of deterministic and aggregation-based certified defenses.
arXiv Detail & Related papers (2022-02-05T20:08:58Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
We study a conceptually simple approach to defend few-shot classifiers against adversarial attacks.
We propose a simple attack-agnostic detection method, using the concept of self-similarity and filtering.
Our evaluation on the miniImagenet (MI) and CUB datasets exhibit good attack detection performance.
arXiv Detail & Related papers (2021-10-24T05:46:03Z) - ATRO: Adversarial Training with a Rejection Option [10.36668157679368]
This paper proposes a classification framework with a rejection option to mitigate the performance deterioration caused by adversarial examples.
Applying the adversarial training objective to both a classifier and a rejection function simultaneously, we can choose to abstain from classification when it has insufficient confidence to classify a test data point.
arXiv Detail & Related papers (2020-10-24T14:05:03Z) - Dynamic Divide-and-Conquer Adversarial Training for Robust Semantic
Segmentation [79.42338812621874]
Adversarial training is promising for improving robustness of deep neural networks towards adversarial perturbations.
We formulate a general adversarial training procedure that can perform decently on both adversarial and clean samples.
We propose a dynamic divide-and-conquer adversarial training (DDC-AT) strategy to enhance the defense effect.
arXiv Detail & Related papers (2020-03-14T05:06:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.