論文の概要: Sparse-View CT Reconstruction using Recurrent Stacked Back Projection
- arxiv url: http://arxiv.org/abs/2112.04998v1
- Date: Thu, 9 Dec 2021 15:44:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-10 15:22:24.623883
- Title: Sparse-View CT Reconstruction using Recurrent Stacked Back Projection
- Title(参考訳): Recurrent Stacked Back Projection を用いたスパースビューCT再構成
- Authors: Wenrui Li, Gregery T. Buzzard, Charles A. Bouman
- Abstract要約: Recurrent Stacked Back Projection (RSBP) と呼ばれる直接再構成手法を導入する。
RSBPは、反復的な畳み込みLSTMネットワークへの入力として、個々のビューの逐次的に取得されたバックプロジェクションを使用する。
本研究では,FBP画像の処理後処理と基本MBIRの処理後処理において,計算コストがMBIRよりも低くなることを実証する。
- 参考スコア(独自算出の注目度): 3.91278924473622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse-view CT reconstruction is important in a wide range of applications
due to limitations on cost, acquisition time, or dosage. However, traditional
direct reconstruction methods such as filtered back-projection (FBP) lead to
low-quality reconstructions in the sub-Nyquist regime. In contrast, deep neural
networks (DNNs) can produce high-quality reconstructions from sparse and noisy
data, e.g. through post-processing of FBP reconstructions, as can model-based
iterative reconstruction (MBIR), albeit at a higher computational cost.
In this paper, we introduce a direct-reconstruction DNN method called
Recurrent Stacked Back Projection (RSBP) that uses sequentially-acquired
backprojections of individual views as input to a recurrent convolutional LSTM
network. The SBP structure maintains all information in the sinogram, while the
recurrent processing exploits the correlations between adjacent views and
produces an updated reconstruction after each new view. We train our network on
simulated data and test on both simulated and real data and demonstrate that
RSBP outperforms both DNN post-processing of FBP images and basic MBIR, with a
lower computational cost than MBIR.
- Abstract(参考訳): Sparse-view CT再構成は、コスト、取得時間、使用量に制限があるため、幅広い応用において重要である。
しかし、フィルターバックプロジェクション(FBP)のような従来の直接再建手法は、サブニキスト体制における低品質の再構築につながる。
対照的に、ディープニューラルネットワーク(DNN)は、例えばモデルベース反復再構成(MBIR)のように、FBP再構成の後処理を通じて、スパースデータやノイズデータから高品質な再構成を生成することができる。
本稿では,リカレント畳み込み型lstmネットワークへの入力として個々のビューの逐次獲得バックプロジェクションを用いる,recurrent stacked back projection(rsbp)と呼ばれる直接再構成dnn手法を提案する。
SBP構造は、シングラム内の全ての情報を保持し、リカレント処理は隣り合うビュー間の相関を利用して、新しいビューごとに更新された再構築を生成する。
シミュレーションデータ上でネットワークをトレーニングし,シミュレーションデータと実データの両方でテストし,fbp画像のdnn後処理と基本mbirを,mbirよりも低い計算コストでrsbpが上回ることを示す。
関連論文リスト
- SST-ReversibleNet: Reversible-prior-based Spectral-Spatial Transformer
for Efficient Hyperspectral Image Reconstruction [15.233185887461826]
Reversible-prior-based methodと呼ばれる新しいフレームワークが提案されている。
ReversibleNetは、シミュレートされた実HSIデータセットの最先端メソッドよりも大幅に優れています。
論文 参考訳(メタデータ) (2023-05-06T14:01:02Z) - A Lightweight Recurrent Learning Network for Sustainable Compressed
Sensing [27.964167481909588]
持続可能なCSシステムを実現するために,繰り返し学習に基づく軽量だが効果的な深層ニューラルネットワークを提案する。
提案手法は,既存のCSアルゴリズムよりも再現性が高い。
論文 参考訳(メタデータ) (2023-04-23T14:54:15Z) - JSRNN: Joint Sampling and Reconstruction Neural Networks for High
Quality Image Compressed Sensing [8.902545322578925]
提案フレームワークには,サンプリングサブネットワークと再構築サブネットワークという2つのサブネットワークが含まれている。
再構成サブネットワークでは、スタックド・デノイング・オートエンコーダ(SDA)と畳み込みニューラルネットワーク(CNN)を組み合わせたカスケードネットワークが信号の再構成のために設計されている。
このフレームワークは、特にサンプリングレートの低い他の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2022-11-11T02:20:30Z) - REGAS: REspiratory-GAted Synthesis of Views for Multi-Phase CBCT
Reconstruction from a single 3D CBCT Acquisition [75.64791080418162]
REGASは、アンダーサンプドトモグラフィビューを合成し、再構成画像中のアーティファクトのエイリアスを緩和する自己教師手法を提案する。
高解像度4Dデータ上でのディープニューラルネットワークの大規模なメモリコストに対処するため、REGASは分散して微分可能なフォワードプロジェクションを可能にする新しいレイパス変換(RPT)を導入した。
論文 参考訳(メタデータ) (2022-08-17T03:42:19Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
本稿では,MRI再構成のためのリカレントトランスモデルである textbfReconFormer を提案する。
高度にアンダーサンプリングされたk空間データから高純度磁気共鳴像を反復的に再構成することができる。
パラメータ効率が向上し,最先端手法よりも大幅に向上したことを示す。
論文 参考訳(メタデータ) (2022-01-23T21:58:19Z) - Spectral Compressive Imaging Reconstruction Using Convolution and
Contextual Transformer [6.929652454131988]
本稿では,CCoT(Contextual Transformer)ブロックというハイブリッドネットワークモジュールを提案する。
提案したCCoTブロックを,一般化された交互投影アルゴリズムに基づく深層展開フレームワークに統合し,さらにGAP-CTネットワークを提案する。
論文 参考訳(メタデータ) (2022-01-15T06:30:03Z) - Reference-based Magnetic Resonance Image Reconstruction Using Texture
Transforme [86.6394254676369]
高速MRI再構成のための新しいテクスチャトランスフォーマーモジュール(TTM)を提案する。
変換器のクエリやキーとしてアンダーサンプルのデータと参照データを定式化する。
提案したTTMは、MRIの再構成手法に積み重ねることで、その性能をさらに向上させることができる。
論文 参考訳(メタデータ) (2021-11-18T03:06:25Z) - Direct PET Image Reconstruction Incorporating Deep Image Prior and a
Forward Projection Model [0.0]
畳み込みニューラルネットワーク(CNN)は近年,PET画像再構成において顕著な性能を発揮している。
深層画像前処理を組み込んだ非教師なし直接PET画像再構成手法を提案する。
提案手法は,非教師なしPET画像再構成を実現するために,損失関数付き前方投影モデルを組み込んだ。
論文 参考訳(メタデータ) (2021-09-02T08:07:58Z) - Deep Neural Networks are Surprisingly Reversible: A Baseline for
Zero-Shot Inversion [90.65667807498086]
本稿では、内部表現のみを与えられたトレーニングモデルへの入力を復元するゼロショット直接モデル逆変換フレームワークを提案する。
ImageNetの最新の分類モデルでは、20層以上の表現から元の224x224px画像を近似的に復元できることを実証的に示す。
論文 参考訳(メタデータ) (2021-07-13T18:01:43Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
MR画像再構成のための最近のディープラーニングに基づく手法は、通常、汎用的なオートエンコーダアーキテクチャを利用する。
OUCR(Over-and-Under Complete Convolu?tional Recurrent Neural Network)を提案する。
提案手法は, トレーニング可能なパラメータの少ない圧縮されたセンシングと, 一般的なディープラーニングに基づく手法に対して, 大幅な改善を実現する。
論文 参考訳(メタデータ) (2021-06-16T15:56:34Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
単一画像超解像(SISR)は、最近の畳み込みニューラルネットワーク(CNN)の発展により、大幅に活性化されている。
本稿では、従来のSISRアルゴリズムに関する新たな知見を提供し、反復最適化に依存するアプローチを提案する。
反復最適化の上に,新しい反復型超解像ネットワーク (ISRN) を提案する。
論文 参考訳(メタデータ) (2020-05-20T11:11:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。