Millimeter Wave Localization with Imperfect Training Data using Shallow
Neural Networks
- URL: http://arxiv.org/abs/2112.05008v1
- Date: Thu, 9 Dec 2021 16:03:30 GMT
- Title: Millimeter Wave Localization with Imperfect Training Data using Shallow
Neural Networks
- Authors: Anish Shastri, Joan Palacios, and Paolo Casari
- Abstract summary: We propose a shallow neural network model to localize mmWave devices indoors.
This model requires significantly fewer weights than those proposed in the literature.
We also propose to relieve training data collection efforts by retrieving location estimates from geometry-based mmWave localization algorithms.
- Score: 13.454939391912095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Millimeter wave (mmWave) localization algorithms exploit the quasi-optical
propagation of mmWave signals, which yields sparse angular spectra at the
receiver. Geometric approaches to angle-based localization typically require to
know the map of the environment and the location of the access points. Thus,
several works have resorted to automated learning in order to infer a device's
location from the properties of the received mmWave signals. However,
collecting training data for such models is a significant burden. In this work,
we propose a shallow neural network model to localize mmWave devices indoors.
This model requires significantly fewer weights than those proposed in the
literature. Therefore, it is amenable for implementation in
resource-constrained hardware, and needs fewer training samples to converge. We
also propose to relieve training data collection efforts by retrieving
(inherently imperfect) location estimates from geometry-based mmWave
localization algorithms. Even in this case, our results show that the proposed
neural networks perform as good as or better than state-of-the-art algorithms.
Related papers
- Sampling weights of deep neural networks [1.2370077627846041]
We introduce a probability distribution, combined with an efficient sampling algorithm, for weights and biases of fully-connected neural networks.
In a supervised learning context, no iterative optimization or gradient computations of internal network parameters are needed.
We prove that sampled networks are universal approximators.
arXiv Detail & Related papers (2023-06-29T10:13:36Z) - Radar Image Reconstruction from Raw ADC Data using Parametric
Variational Autoencoder with Domain Adaptation [0.0]
We propose a parametrically constrained variational autoencoder, capable of generating the clustered and localized target detections on the range-angle image.
To circumvent the problem of training the proposed neural network on all possible scenarios using real radar data, we propose domain adaptation strategies.
arXiv Detail & Related papers (2022-05-30T16:17:36Z) - Acoustic-Net: A Novel Neural Network for Sound Localization and
Quantification [28.670240455952317]
A novel neural network, termed the Acoustic-Net, is proposed to locate and quantify the sound source simply using the original signals.
The experiments demonstrate that the proposed method significantly improves the accuracy of sound source prediction and the computing speed.
arXiv Detail & Related papers (2022-03-31T12:20:09Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers [104.01415343139901]
We propose a deep detector entitled LoRD-Net for recovering information symbols from one-bit measurements.
LoRD-Net has a task-based architecture dedicated to recovering the underlying signal of interest.
We evaluate the proposed receiver architecture for one-bit signal recovery in wireless communications.
arXiv Detail & Related papers (2021-02-05T04:26:05Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
We introduce a Convolutional Neural Network (CNN) that is trained from mutli-channel data of the true array manifold matrix.
We train a CNN in the low-SNR regime to predict DoAs across all SNRs.
Our robust solution can be applied in several fields, ranging from wireless array sensors to acoustic microphones or sonars.
arXiv Detail & Related papers (2020-11-17T12:52:18Z) - Wireless Localisation in WiFi using Novel Deep Architectures [4.541069830146568]
This paper studies the indoor localisation of WiFi devices based on a commodity chipset and standard channel sounding.
We present a novel shallow neural network (SNN) in which features are extracted from the channel state information corresponding to WiFi subcarriers received on different antennas.
arXiv Detail & Related papers (2020-10-16T22:48:29Z) - Compressive sensing with un-trained neural networks: Gradient descent
finds the smoothest approximation [60.80172153614544]
Un-trained convolutional neural networks have emerged as highly successful tools for image recovery and restoration.
We show that an un-trained convolutional neural network can approximately reconstruct signals and images that are sufficiently structured, from a near minimal number of random measurements.
arXiv Detail & Related papers (2020-05-07T15:57:25Z) - Centimeter-Level Indoor Localization using Channel State Information
with Recurrent Neural Networks [12.193558591962754]
This paper proposes the neural network method to estimate the centimeter-level indoor positioning with real CSI data collected from linear antennas.
It utilizes an amplitude of channel response or a correlation matrix as the input, which can highly reduce the data size and suppress the noise.
Also, it makes use of the consistency in the user motion trajectory via Recurrent Neural Network (RNN) and signal-noise ratio (SNR) information, which can further improve the estimation accuracy.
arXiv Detail & Related papers (2020-02-04T17:10:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.