LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers
- URL: http://arxiv.org/abs/2102.02993v1
- Date: Fri, 5 Feb 2021 04:26:05 GMT
- Title: LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers
- Authors: Shahin Khobahi, Nir Shlezinger, Mojtaba Soltanalian and Yonina C.
Eldar
- Abstract summary: We propose a deep detector entitled LoRD-Net for recovering information symbols from one-bit measurements.
LoRD-Net has a task-based architecture dedicated to recovering the underlying signal of interest.
We evaluate the proposed receiver architecture for one-bit signal recovery in wireless communications.
- Score: 104.01415343139901
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The need to recover high-dimensional signals from their noisy low-resolution
quantized measurements is widely encountered in communications and sensing. In
this paper, we focus on the extreme case of one-bit quantizers, and propose a
deep detector entitled LoRD-Net for recovering information symbols from one-bit
measurements. Our method is a model-aware data-driven architecture based on
deep unfolding of first-order optimization iterations. LoRD-Net has a
task-based architecture dedicated to recovering the underlying signal of
interest from the one-bit noisy measurements without requiring prior knowledge
of the channel matrix through which the one-bit measurements are obtained. The
proposed deep detector has much fewer parameters compared to black-box deep
networks due to the incorporation of domain-knowledge in the design of its
architecture, allowing it to operate in a data-driven fashion while benefiting
from the flexibility, versatility, and reliability of model-based optimization
methods. LoRD-Net operates in a blind fashion, which requires addressing both
the non-linear nature of the data-acquisition system as well as identifying a
proper optimization objective for signal recovery. Accordingly, we propose a
two-stage training method for LoRD-Net, in which the first stage is dedicated
to identifying the proper form of the optimization process to unfold, while the
latter trains the resulting model in an end-to-end manner. We numerically
evaluate the proposed receiver architecture for one-bit signal recovery in
wireless communications and demonstrate that the proposed hybrid methodology
outperforms both data-driven and model-based state-of-the-art methods, while
utilizing small datasets, on the order of merely $\sim 500$ samples, for
training.
Related papers
- Adaptive Anomaly Detection in Network Flows with Low-Rank Tensor Decompositions and Deep Unrolling [9.20186865054847]
Anomaly detection (AD) is increasingly recognized as a key component for ensuring the resilience of future communication systems.
This work considers AD in network flows using incomplete measurements.
We propose a novel block-successive convex approximation algorithm based on a regularized model-fitting objective.
Inspired by Bayesian approaches, we extend the model architecture to perform online adaptation to per-flow and per-time-step statistics.
arXiv Detail & Related papers (2024-09-17T19:59:57Z) - Device Sampling and Resource Optimization for Federated Learning in Cooperative Edge Networks [17.637761046608]
Federated learning (FedL) distributes machine learning (ML) across worker devices by having them train local models that are periodically aggregated by a server.
FedL ignores two important characteristics of contemporary wireless networks: (i) the network may contain heterogeneous communication/computation resources, and (ii) there may be significant overlaps in devices' local data distributions.
We develop a novel optimization methodology that jointly accounts for these factors via intelligent device sampling complemented by device-to-device (D2D) offloading.
arXiv Detail & Related papers (2023-11-07T21:17:59Z) - Deep Unfolding of the DBFB Algorithm with Application to ROI CT Imaging
with Limited Angular Density [15.143939192429018]
This paper presents a new method for reconstructing regions of interest (ROI) from a limited number of computed (CT) measurements.
Deep methods are fast, and they can reach high reconstruction quality by leveraging information from datasets.
We introduce an unfolding neural network called UDBFB designed for ROI reconstruction from limited data.
arXiv Detail & Related papers (2022-09-27T09:10:57Z) - Exploiting Temporal Structures of Cyclostationary Signals for
Data-Driven Single-Channel Source Separation [98.95383921866096]
We study the problem of single-channel source separation (SCSS)
We focus on cyclostationary signals, which are particularly suitable in a variety of application domains.
We propose a deep learning approach using a U-Net architecture, which is competitive with the minimum MSE estimator.
arXiv Detail & Related papers (2022-08-22T14:04:56Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
We consider deep neural networks for solving inverse problems that are robust to forward model mis-specifications.
We design a new robust deep neural network architecture by applying algorithm unfolding techniques to a robust version of the underlying recovery problem.
The proposed REST network is shown to outperform state-of-the-art model-based and data-driven algorithms in both compressive sensing and radar imaging problems.
arXiv Detail & Related papers (2021-10-20T06:15:45Z) - Neural Calibration for Scalable Beamforming in FDD Massive MIMO with
Implicit Channel Estimation [10.775558382613077]
Channel estimation and beamforming play critical roles in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems.
We propose a deep learning-based approach that directly optimize the beamformers at the base station according to the received uplink pilots.
A neural calibration method is proposed to improve the scalability of the end-to-end design.
arXiv Detail & Related papers (2021-08-03T14:26:14Z) - A novel Deep Neural Network architecture for non-linear system
identification [78.69776924618505]
We present a novel Deep Neural Network (DNN) architecture for non-linear system identification.
Inspired by fading memory systems, we introduce inductive bias (on the architecture) and regularization (on the loss function)
This architecture allows for automatic complexity selection based solely on available data.
arXiv Detail & Related papers (2021-06-06T10:06:07Z) - RIS Enhanced Massive Non-orthogonal Multiple Access Networks: Deployment
and Passive Beamforming Design [116.88396201197533]
A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS)
The problem of joint deployment, phase shift design, as well as power allocation is formulated for maximizing the energy efficiency.
A novel long short-term memory (LSTM) based echo state network (ESN) algorithm is proposed to predict users' tele-traffic demand by leveraging a real dataset.
A decaying double deep Q-network (D3QN) based position-acquisition and phase-control algorithm is proposed to solve the joint problem of deployment and design of the RIS.
arXiv Detail & Related papers (2020-01-28T14:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.