Continuation Path with Linear Convergence Rate
- URL: http://arxiv.org/abs/2112.05104v1
- Date: Thu, 9 Dec 2021 18:42:13 GMT
- Title: Continuation Path with Linear Convergence Rate
- Authors: Eugene Ndiaye and Ichiro Takeuchi
- Abstract summary: Path-following algorithms are frequently used in composite optimization problems where a series of subproblems are solved sequentially.
We present a primal dual analysis of the path-following algorithm as well as determining how accurately each subproblem should be solved to guarantee a linear convergence rate on a target problem.
Considering optimization with a sparsity-inducing penalty, we analyze the change of the active sets with respect to the regularization parameter.
- Score: 18.405645120971496
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Path-following algorithms are frequently used in composite optimization
problems where a series of subproblems, with varying regularization
hyperparameters, are solved sequentially. By reusing the previous solutions as
initialization, better convergence speeds have been observed numerically. This
makes it a rather useful heuristic to speed up the execution of optimization
algorithms in machine learning. We present a primal dual analysis of the
path-following algorithm and explore how to design its hyperparameters as well
as determining how accurately each subproblem should be solved to guarantee a
linear convergence rate on a target problem. Furthermore, considering
optimization with a sparsity-inducing penalty, we analyze the change of the
active sets with respect to the regularization parameter. The latter can then
be adaptively calibrated to finely determine the number of features that will
be selected along the solution path. This leads to simple heuristics for
calibrating hyperparameters of active set approaches to reduce their complexity
and improve their execution time.
Related papers
- Efficient Low-rank Identification via Accelerated Iteratively Reweighted Nuclear Norm Minimization [8.879403568685499]
We introduce an adaptive updating strategy for smoothing parameters.
This behavior transforms the algorithm into one that effectively solves problems after a few iterations.
We prove the global proposed experiment, guaranteeing that every iteration is a critical one.
arXiv Detail & Related papers (2024-06-22T02:37:13Z) - A simple uniformly optimal method without line search for convex optimization [9.280355951055865]
We show that line search is superfluous in attaining the optimal rate of convergence for solving a convex optimization problem whose parameters are not given a priori.
We present a novel accelerated gradient descent type algorithm called AC-FGM that can achieve an optimal $mathcalO (1/k2)$ rate of convergence for smooth convex optimization.
arXiv Detail & Related papers (2023-10-16T05:26:03Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Iterative-Free Quantum Approximate Optimization Algorithm Using Neural
Networks [20.051757447006043]
We propose a practical method that uses a simple, fully connected neural network to find better parameters tailored to a new given problem instance.
Our method is consistently the fastest to converge while also the best final result.
arXiv Detail & Related papers (2022-08-21T14:05:11Z) - Accelerated nonlinear primal-dual hybrid gradient algorithms with
applications to machine learning [0.0]
primal-dual hybrid gradient (PDHG) is a first-order method that splits convex optimization problems with saddle-point structure into smaller subproblems.
PDHG requires stepsize parameters fine-tuned for the problem at hand.
We introduce accelerated nonlinear variants of the PDHG algorithm that can achieve, for a broad class of optimization problems relevant to machine learning.
arXiv Detail & Related papers (2021-09-24T22:37:10Z) - Implicit differentiation for fast hyperparameter selection in non-smooth
convex learning [87.60600646105696]
We study first-order methods when the inner optimization problem is convex but non-smooth.
We show that the forward-mode differentiation of proximal gradient descent and proximal coordinate descent yield sequences of Jacobians converging toward the exact Jacobian.
arXiv Detail & Related papers (2021-05-04T17:31:28Z) - Balancing Rates and Variance via Adaptive Batch-Size for Stochastic
Optimization Problems [120.21685755278509]
In this work, we seek to balance the fact that attenuating step-size is required for exact convergence with the fact that constant step-size learns faster in time up to an error.
Rather than fixing the minibatch the step-size at the outset, we propose to allow parameters to evolve adaptively.
arXiv Detail & Related papers (2020-07-02T16:02:02Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Proximal Gradient Algorithm with Momentum and Flexible Parameter Restart
for Nonconvex Optimization [73.38702974136102]
Various types of parameter restart schemes have been proposed for accelerated algorithms to facilitate their practical convergence in rates.
In this paper, we propose an algorithm for solving nonsmooth problems.
arXiv Detail & Related papers (2020-02-26T16:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.