論文の概要: GAN-Supervised Dense Visual Alignment
- arxiv url: http://arxiv.org/abs/2112.05143v1
- Date: Thu, 9 Dec 2021 18:59:58 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-10 14:52:48.077003
- Title: GAN-Supervised Dense Visual Alignment
- Title(参考訳): GAN-Supervised Dense Visual Alignment
- Authors: William Peebles, Jun-Yan Zhu, Richard Zhang, Antonio Torralba, Alexei
Efros, Eli Shechtman
- Abstract要約: 本稿では,識別モデル学習のためのフレームワークであるGAN-Supervised Learningと,GAN生成した学習データをエンドツーエンドで共同で学習する手法を提案する。
従来のCongealing法にインスパイアされた我々のGANgealingアルゴリズムは、Spatial Transformerを訓練し、不整合データに基づいて訓練されたGANのランダムなサンプルを共通の目標モードにマッピングする。
- 参考スコア(独自算出の注目度): 95.37027391102684
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose GAN-Supervised Learning, a framework for learning discriminative
models and their GAN-generated training data jointly end-to-end. We apply our
framework to the dense visual alignment problem. Inspired by the classic
Congealing method, our GANgealing algorithm trains a Spatial Transformer to map
random samples from a GAN trained on unaligned data to a common,
jointly-learned target mode. We show results on eight datasets, all of which
demonstrate our method successfully aligns complex data and discovers dense
correspondences. GANgealing significantly outperforms past self-supervised
correspondence algorithms and performs on-par with (and sometimes exceeds)
state-of-the-art supervised correspondence algorithms on several datasets --
without making use of any correspondence supervision or data augmentation and
despite being trained exclusively on GAN-generated data. For precise
correspondence, we improve upon state-of-the-art supervised methods by as much
as $3\times$. We show applications of our method for augmented reality, image
editing and automated pre-processing of image datasets for downstream GAN
training.
- Abstract(参考訳): 本稿では,識別モデル学習のためのフレームワークであるgan-supervised learningと,そのgan生成トレーニングデータを提案する。
我々はこの枠組みを濃密な視覚アライメント問題に適用する。
従来のCongealing法にインスパイアされた我々のGANgealingアルゴリズムは、Spatial Transformerを訓練し、不整合データに基づいて訓練されたGANのランダムなサンプルを共通の目標モードにマッピングする。
提案手法は, 8つのデータセットに結果を示し, それぞれが複雑なデータに適合し, 密接な対応を発見できることを示した。
ガンジアリングは過去の自己教師付き対応アルゴリズムを著しく上回り、いくつかのデータセット上で最先端の教師付き対応アルゴリズムと同等(時にはそれ以上)に実行します。
正確な対応のために、最先端の教師付き手法を最大$3\times$で改善する。
本稿では,gan学習のための拡張現実,画像編集,画像データセットの自動前処理手法の応用例を示す。
関連論文リスト
- Decentralized Federated Learning with Gradient Tracking over Time-Varying Directed Networks [42.92231921732718]
本稿では,DSGTm-TVというコンセンサスに基づくアルゴリズムを提案する。
グラデーショントラッキングとヘビーボールモーメントを取り入れて、グローバルな目的関数を最適化する。
DSGTm-TVでは、エージェントは近隣エージェントとの情報交換を用いて局所モデルパラメータと勾配推定を更新する。
論文 参考訳(メタデータ) (2024-09-25T06:23:16Z) - SMaRt: Improving GANs with Score Matching Regularity [94.81046452865583]
生成的敵ネットワーク(GAN)は通常、基礎となる多様体が複雑である非常に多様なデータから学ぶのに苦労する。
スコアマッチングは、生成したデータポイントを実データ多様体へ持続的にプッシュする能力のおかげで、この問題に対する有望な解決策であることを示す。
スコアマッチング規則性(SMaRt)を用いたGANの最適化を提案する。
論文 参考訳(メタデータ) (2023-11-30T03:05:14Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Semi-Supervised Image Captioning by Adversarially Propagating Labeled
Data [95.0476489266988]
本稿では、画像キャプションモデルの一般化を改善するための、新しいデータ効率半教師付きフレームワークを提案する。
提案手法は,キャプタにペアデータから学習し,段階的に未ペアデータの関連付けを行うよう訓練する。
1)画像ベースと(2)高密度領域ベースキャプションデータセットの両方を総合的かつ包括的な実験結果とし,それに続いて,少ないペアリングデータセットの包括的分析を行った。
論文 参考訳(メタデータ) (2023-01-26T15:25:43Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Exploring Data Aggregation and Transformations to Generalize across
Visual Domains [0.0]
この論文は、ドメイン一般化(DG)、ドメイン適応(DA)およびそれらのバリエーションの研究に寄与する。
本稿では,機能集約戦略と視覚変換を利用するドメイン一般化とドメイン適応の新しいフレームワークを提案する。
提案手法が確立したDGおよびDAベンチマークにおいて,最先端の競争的アプローチよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-20T14:58:14Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
ドメイン知識を取り入れ,データ集約学習アルゴリズムの一般化能力を向上させるためのデータ拡張手法を提案する。
本研究では,空間領域における散乱中心のスパース性とアジムタル領域における散乱係数の滑らかな変動構造を活かし,過パラメータモデルフィッティングの問題を解く。
論文 参考訳(メタデータ) (2020-12-16T21:46:33Z) - Online Descriptor Enhancement via Self-Labelling Triplets for Visual
Data Association [28.03285334702022]
オブジェクトレベルの視覚データアソシエーションのタスクにおいて,視覚記述子を漸進的に精製する自己教師型手法を提案する。
本手法は,ドメインに依存しないデータで事前学習した画像分類ネットワークを継続的にトレーニングすることにより,オンラインのディープディスクリプタジェネレータを最適化する。
提案手法はトラッキング・バイ・ディテクト・タスクに適用された他の視覚的データ・アソシエーション手法を超越し,観測情報に適応しようとする他の手法と比較して,優れた性能向上を提供することを示す。
論文 参考訳(メタデータ) (2020-11-06T17:42:04Z) - Lessons Learned from the Training of GANs on Artificial Datasets [0.0]
GAN(Generative Adversarial Networks)は,近年,現実的な画像の合成において大きな進歩を遂げている。
GANは不適合や過度に適合する傾向があり、分析が困難で制約を受ける。
無限に多くのサンプルがあり、実際のデータ分布は単純である人工データセットでトレーニングする。
GANのトレーニング混合物はネットワークの深さや幅を増大させるよりもパフォーマンスが向上することがわかった。
論文 参考訳(メタデータ) (2020-07-13T14:51:02Z) - Gradient-Induced Co-Saliency Detection [81.54194063218216]
Co-SOD(Co-saliency Detection)は、一般的な唾液前景を関連画像のグループに分割することを目的としている。
本稿では,人間の行動にインスパイアされた,勾配誘導型共分散検出法を提案する。
論文 参考訳(メタデータ) (2020-04-28T08:40:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。