Multimedia Datasets for Anomaly Detection: A Survey
- URL: http://arxiv.org/abs/2112.05410v1
- Date: Fri, 10 Dec 2021 09:32:21 GMT
- Title: Multimedia Datasets for Anomaly Detection: A Survey
- Authors: Pratibha Kumari, Anterpreet Kaur Bedi, Mukesh Saini
- Abstract summary: This paper presents a comprehensive survey on a variety of video, audio, as well as audio-visual datasets based on anomaly detection.
It aims to address the lack of a comprehensive comparison and analysis of multimedia public datasets based on anomaly detection.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimedia anomaly datasets play a crucial role in automated surveillance.
They have a wide range of applications expanding from outlier object/ situation
detection to the detection of life-threatening events. This field is receiving
a huge level of research interest for more than 1.5 decades, and consequently,
more and more datasets dedicated to anomalous actions and object detection have
been created. Tapping these public anomaly datasets enable researchers to
generate and compare various anomaly detection frameworks with the same input
data. This paper presents a comprehensive survey on a variety of video, audio,
as well as audio-visual datasets based on the application of anomaly detection.
This survey aims to address the lack of a comprehensive comparison and analysis
of multimedia public datasets based on anomaly detection. Also, it can assist
researchers in selecting the best available dataset for bench-marking
frameworks. Additionally, we discuss gaps in the existing dataset and future
direction insights towards developing multimodal anomaly detection datasets.
Related papers
- Introducing a Comprehensive, Continuous, and Collaborative Survey of Intrusion Detection Datasets [2.7082111912355877]
COMIDDS is an effort to comprehensively survey intrusion detection datasets with an unprecedented level of detail.
It provides structured and critical information on each dataset, including actual data samples and links to relevant publications.
arXiv Detail & Related papers (2024-08-05T14:40:41Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.
equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.
Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
arXiv Detail & Related papers (2024-05-27T02:42:33Z) - PAD: A Dataset and Benchmark for Pose-agnostic Anomaly Detection [28.973078719467516]
We develop Multi-pose Anomaly Detection dataset and Pose-agnostic Anomaly Detection benchmark.
Specifically, we build MAD using 20 complex-shaped LEGO toys with various poses, and high-quality and diverse 3D anomalies in both simulated and real environments.
We also propose a novel method OmniposeAD, trained using MAD, specifically designed for pose-agnostic anomaly detection.
arXiv Detail & Related papers (2023-10-11T17:59:56Z) - WePaMaDM-Outlier Detection: Weighted Outlier Detection using Pattern
Approaches for Mass Data Mining [0.6754597324022876]
Outlier detection can reveal vital information about system faults, fraudulent activities, and patterns in the data.
This article proposed the WePaMaDM-Outlier Detection with distinct mass data mining domain.
It also investigates the significance of data modeling in outlier detection techniques in surveillance, fault detection, and trend analysis.
arXiv Detail & Related papers (2023-06-09T07:00:00Z) - Deep Learning for Time Series Anomaly Detection: A Survey [53.83593870825628]
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare.
The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns.
This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning.
arXiv Detail & Related papers (2022-11-09T22:40:22Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
We consider the problem of building visual anomaly detection systems for mobile robots.
Standard anomaly detection models are trained using large datasets composed only of non-anomalous data.
We tackle the problem of exploiting these data to improve the performance of a Real-NVP anomaly detection model.
arXiv Detail & Related papers (2022-09-20T15:18:13Z) - Detection Hub: Unifying Object Detection Datasets via Query Adaptation
on Language Embedding [137.3719377780593]
A new design (named Detection Hub) is dataset-aware and category-aligned.
It mitigates the dataset inconsistency and provides coherent guidance for the detector to learn across multiple datasets.
The categories across datasets are semantically aligned into a unified space by replacing one-hot category representations with word embedding.
arXiv Detail & Related papers (2022-06-07T17:59:44Z) - Functional Anomaly Detection: a Benchmark Study [4.444788548423704]
Anomaly detection can now rely on measurements sampled at a very high frequency.
It is the purpose of this paper to investigate the performance of recent techniques for anomaly detection in the functional setup on real datasets.
arXiv Detail & Related papers (2022-01-13T18:20:32Z) - Unsupervised Domain Adaption of Object Detectors: A Survey [87.08473838767235]
Recent advances in deep learning have led to the development of accurate and efficient models for various computer vision applications.
Learning highly accurate models relies on the availability of datasets with a large number of annotated images.
Due to this, model performance drops drastically when evaluated on label-scarce datasets having visually distinct images.
arXiv Detail & Related papers (2021-05-27T23:34:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.