Functional Anomaly Detection: a Benchmark Study
- URL: http://arxiv.org/abs/2201.05115v1
- Date: Thu, 13 Jan 2022 18:20:32 GMT
- Title: Functional Anomaly Detection: a Benchmark Study
- Authors: Guillaume Staerman, Eric Adjakossa, Pavlo Mozharovskyi, Vera Hofer,
Jayant Sen Gupta and Stephan Cl\'emen\c{c}on
- Abstract summary: Anomaly detection can now rely on measurements sampled at a very high frequency.
It is the purpose of this paper to investigate the performance of recent techniques for anomaly detection in the functional setup on real datasets.
- Score: 4.444788548423704
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing automation in many areas of the Industry expressly demands to
design efficient machine-learning solutions for the detection of abnormal
events. With the ubiquitous deployment of sensors monitoring nearly
continuously the health of complex infrastructures, anomaly detection can now
rely on measurements sampled at a very high frequency, providing a very rich
representation of the phenomenon under surveillance. In order to exploit fully
the information thus collected, the observations cannot be treated as
multivariate data anymore and a functional analysis approach is required. It is
the purpose of this paper to investigate the performance of recent techniques
for anomaly detection in the functional setup on real datasets. After an
overview of the state-of-the-art and a visual-descriptive study, a variety of
anomaly detection methods are compared. While taxonomies of abnormalities (e.g.
shape, location) in the functional setup are documented in the literature,
assigning a specific type to the identified anomalies appears to be a
challenging task. Thus, strengths and weaknesses of the existing approaches are
benchmarked in view of these highlighted types in a simulation study. Anomaly
detection methods are next evaluated on two datasets, related to the monitoring
of helicopters in flight and to the spectrometry of construction materials
namely. The benchmark analysis is concluded by recommendation guidance for
practitioners.
Related papers
- A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Anomaly Detection in Graph Structured Data: A Survey [0.46040036610482665]
We discuss a comprehensive overview of anomaly detection techniques on graph data.
We present a new taxonomy that categorizes the different state-of-the-art anomaly detection methods.
arXiv Detail & Related papers (2024-05-10T01:30:25Z) - An Improved Anomaly Detection Model for Automated Inspection of Power Line Insulators [0.0]
Inspection of insulators is important to ensure reliable operation of the power system.
Deep learning is being increasingly exploited to automate the inspection process.
This article proposes the use of anomaly detection along with object detection in a two-stage approach for incipient fault detection.
arXiv Detail & Related papers (2023-11-14T11:36:20Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - Deep Learning for Time Series Anomaly Detection: A Survey [53.83593870825628]
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare.
The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns.
This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning.
arXiv Detail & Related papers (2022-11-09T22:40:22Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
We consider the problem of building visual anomaly detection systems for mobile robots.
Standard anomaly detection models are trained using large datasets composed only of non-anomalous data.
We tackle the problem of exploiting these data to improve the performance of a Real-NVP anomaly detection model.
arXiv Detail & Related papers (2022-09-20T15:18:13Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Sintel: A Machine Learning Framework to Extract Insights from Signals [13.04826679898367]
We introduce Sintel, a machine learning framework for end-to-end time series tasks such as anomaly detection.
Sintel logs the entire anomaly detection journey, providing detailed documentation of anomalies over time.
It enables users to analyze signals, compare methods, and investigate anomalies through an interactive visualization tool.
arXiv Detail & Related papers (2022-04-19T19:38:27Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - A Survey on Anomaly Detection for Technical Systems using LSTM Networks [0.0]
Anomalies represent deviations from the intended system operation and can lead to decreased efficiency as well as partial or complete system failure.
In this article, a survey on state-of-the-art anomaly detection using deep neural and especially long short-term memory networks is conducted.
The investigated approaches are evaluated based on the application scenario, data and anomaly types as well as further metrics.
arXiv Detail & Related papers (2021-05-28T13:24:40Z) - Real-World Anomaly Detection by using Digital Twin Systems and
Weakly-Supervised Learning [3.0100975935933567]
We present novel weakly-supervised approaches to anomaly detection for industrial settings.
The approaches make use of a Digital Twin to generate a training dataset which simulates the normal operation of the machinery.
The performance of the proposed methods is compared against various state-of-the-art anomaly detection algorithms on an application to a real-world dataset.
arXiv Detail & Related papers (2020-11-12T10:15:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.