論文の概要: Sentiment Analysis on Brazilian Portuguese User Reviews
- arxiv url: http://arxiv.org/abs/2112.05459v1
- Date: Fri, 10 Dec 2021 11:18:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-13 20:03:43.433047
- Title: Sentiment Analysis on Brazilian Portuguese User Reviews
- Title(参考訳): ブラジルポルトガル語ユーザレビューの感性分析
- Authors: Frederico Souza, Jo\~ao Filho
- Abstract要約: 本研究は,システム結果の極性を仮定して,文書埋め込み戦略の予測性能を解析する。
この分析には、単一のデータセットに統合されたブラジルの5つの感情分析データセットと、トレーニング、テスト、バリデーションセットの参照パーティショニングが含まれている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Sentiment Analysis is one of the most classical and primarily studied natural
language processing tasks. This problem had a notable advance with the
proposition of more complex and scalable machine learning models. Despite this
progress, the Brazilian Portuguese language still disposes only of limited
linguistic resources, such as datasets dedicated to sentiment classification,
especially when considering the existence of predefined partitions in training,
testing, and validation sets that would allow a more fair comparison of
different algorithm alternatives. Motivated by these issues, this work analyzes
the predictive performance of a range of document embedding strategies,
assuming the polarity as the system outcome. This analysis includes five
sentiment analysis datasets in Brazilian Portuguese, unified in a single
dataset, and a reference partitioning in training, testing, and validation
sets, both made publicly available through a digital repository. A
cross-evaluation of dataset-specific models over different contexts is
conducted to evaluate their generalization capabilities and the feasibility of
adopting a unique model for addressing all scenarios.
- Abstract(参考訳): 感性分析は、最も古典的で主に研究されている自然言語処理タスクの1つである。
この問題は、より複雑でスケーラブルな機械学習モデルの提案によって顕著な進歩を遂げた。
この進展にもかかわらず、ブラジルポルトガル語は、感情分類に特化したデータセットのような限られた言語資源のみを処分し、特にトレーニング、テスト、検証セットにおける事前定義された分割の存在を考慮して、異なるアルゴリズムの代替品をより公平に比較することができる。
これらの課題に触発され、本研究は、システム結果の極性を仮定して、様々な文書埋め込み戦略の予測性能を分析する。
この分析には、単一のデータセットに統一されたブラジルポルトガル語の5つの感情分析データセットと、トレーニング、テスト、検証セットの参照パーティショニングが含まれている。
異なるコンテキストにおけるデータセット固有のモデルの相互評価を行い、その一般化能力と、すべてのシナリオに固有のモデルを適用する可能性を評価する。
関連論文リスト
- A deep Natural Language Inference predictor without language-specific
training data [44.26507854087991]
本研究では,言語固有の訓練データセットを使わずに,目的言語における文のペア間の推論関係(NLI)に対処するためのNLP手法を提案する。
我々は、同じトレーニング済みモデルの2つのインスタンスとともに、手動で翻訳される汎用翻訳データセットを利用する。
このモデルは、機械翻訳Stanford NLIテストデータセット、機械翻訳Multi-Genre NLIテストデータセット、手動翻訳RTE3-ITAテストデータセットで評価されている。
論文 参考訳(メタデータ) (2023-09-06T10:20:59Z) - Disco-Bench: A Discourse-Aware Evaluation Benchmark for Language
Modelling [70.23876429382969]
本研究では,多種多様なNLPタスクに対して,文内談話特性を評価できるベンチマークを提案する。
ディスコ・ベンチは文学領域における9つの文書レベルのテストセットから構成されており、豊富な談話現象を含んでいる。
また,言語分析のために,対象モデルが談話知識を学習するかどうかを検証できる診断テストスイートを設計する。
論文 参考訳(メタデータ) (2023-07-16T15:18:25Z) - Sentiment Classification of Code-Switched Text using Pre-trained
Multilingual Embeddings and Segmentation [1.290382979353427]
コード切替型感情分析のための多段階自然言語処理アルゴリズムを提案する。
提案アルゴリズムは、人間の専門知識に制限のある複数の言語の感情分析のために拡張することができる。
論文 参考訳(メタデータ) (2022-10-29T01:52:25Z) - FRMT: A Benchmark for Few-Shot Region-Aware Machine Translation [64.9546787488337]
本稿では、Few-shot Region-aware Machine Translationのための新しいデータセットと評価ベンチマークFRMTを提案する。
このデータセットは、英語からポルトガル語と中国語の2つの地域変種へのプロの翻訳で構成されている。
論文 参考訳(メタデータ) (2022-10-01T05:02:04Z) - IGLUE: A Benchmark for Transfer Learning across Modalities, Tasks, and
Languages [87.5457337866383]
画像認識言語理解評価ベンチマークについて紹介する。
IGLUEは、視覚的質問応答、クロスモーダル検索、グラウンドド推論、20言語にわたるグラウンドドエンターテイメントタスクをまとめて提供する。
翻訳-テストの転送はゼロショットの転送よりも優れており、少数ショットの学習は多くのタスクに役立てることが難しい。
論文 参考訳(メタデータ) (2022-01-27T18:53:22Z) - A Latent-Variable Model for Intrinsic Probing [93.62808331764072]
固有プローブ構築のための新しい潜在変数定式化を提案する。
我々は、事前訓練された表現が言語間交互に絡み合ったモルフォシンタクスの概念を発達させる経験的証拠を見出した。
論文 参考訳(メタデータ) (2022-01-20T15:01:12Z) - Automatic Construction of Evaluation Suites for Natural Language
Generation Datasets [17.13484629172643]
我々は、制御された摂動を生成し、テキストからスカラー、テキストからテキストへ、あるいはデータからテキストへ設定したサブセットを識別するフレームワークを開発する。
80個のチャレンジセットからなる評価スイートを提案し、現在の世代モデルの限界に光を当てることを可能にした分析の種類を実証する。
論文 参考訳(メタデータ) (2021-06-16T18:20:58Z) - TextFlint: Unified Multilingual Robustness Evaluation Toolkit for
Natural Language Processing [73.16475763422446]
NLPタスク(TextFlint)のための多言語ロバスト性評価プラットフォームを提案する。
普遍的なテキスト変換、タスク固有の変換、敵攻撃、サブポピュレーション、およびそれらの組み合わせを取り入れ、包括的な堅牢性分析を提供する。
TextFlintは、モデルの堅牢性の欠点に対処するために、完全な分析レポートとターゲットとした拡張データを生成します。
論文 参考訳(メタデータ) (2021-03-21T17:20:38Z) - Fine-Grained Analysis of Cross-Linguistic Syntactic Divergences [18.19093600136057]
並列コーパスから任意の言語対の発散パターンを抽出するフレームワークを提案する。
我々のフレームワークは、言語間の相違の詳細な図を提供し、以前のアプローチを一般化し、完全に自動化することを示します。
論文 参考訳(メタデータ) (2020-05-07T13:05:03Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
XCOPA (Cross-lingual Choice of Plausible Alternatives) は11言語における因果コモンセンス推論のための多言語データセットである。
提案手法は,翻訳に基づく転送と比較して,現在の手法の性能が低下していることを明らかにする。
論文 参考訳(メタデータ) (2020-05-01T12:22:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。