Hybrid Quantum-Classical Multi-cut Benders Approach with a Power System
Application
- URL: http://arxiv.org/abs/2112.05643v1
- Date: Fri, 10 Dec 2021 16:16:09 GMT
- Title: Hybrid Quantum-Classical Multi-cut Benders Approach with a Power System
Application
- Authors: Nikolaos G. Paterakis
- Abstract summary: A quantum-classical (HQC) solution to the Unit Commitment (UC) problem is presented.
The validity and computational viability of the proposed approach are demonstrated using the D-Wave Advantage 4.1 quantum annealer.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Leveraging the current generation of quantum devices to solve optimization
problems of practical interest necessitates the development of hybrid
quantum-classical (HQC) solution approaches. In this paper, a multi-cut Benders
decomposition (BD) approach that exploits multiple feasible solutions of the
master problem (MP) to generate multiple valid cuts is adapted, so as to be
used as an HQC solver for general mixed-integer linear programming (MILP)
problems. The use of different cut selection criteria and strategies to manage
the size of the MP by eliciting a subset of cuts to be added in each iteration
of the BD scheme using quantum computing is discussed. The HQC optimization
algorithm is applied to the Unit Commitment (UC) problem. UC is a prototypical
use case of optimization applied to electrical power systems, a critical sector
that may benefit from advances in quantum computing. The validity and
computational viability of the proposed approach are demonstrated using the
D-Wave Advantage 4.1 quantum annealer.
Related papers
- Solving the Independent Domination Problem by Quantum Approximate Optimization Algorithm [0.5919433278490629]
Independent Domination Problem (IDP) has practical implications in various real-world scenarios.
Existing classical algorithms for IDP are plagued by high computational complexity.
This paper introduces a Quantum Approximate Optimization (QAOA)-based approach to address the IDP.
arXiv Detail & Related papers (2024-10-22T17:49:00Z) - Evaluating Quantum Optimization for Dynamic Self-Reliant Community Detection [3.6021182997326022]
We formulate a Quadratic Unconstrained Binary Optimization (QUBO) problem suitable for solving using quantum computationcolorblue.
The formulation aims to find communities with maximal self-sufficiency and minimal power flowing between them.
We benchmark the solution quality for multiple approaches: D-Wave's hybrid quantum-classical solvers, classicals, and a branch-and-bound solver.
arXiv Detail & Related papers (2024-07-09T11:44:58Z) - A hybrid Quantum-Classical Algorithm for Mixed-Integer Optimization in Power Systems [0.0]
We present a framework for solving power system optimization problems with a Quantum Computer (QC)
Our guiding applications are the optimal transmission switching and the verification of neural networks trained to solve a DC Optimal Power Flow.
arXiv Detail & Related papers (2024-04-16T16:11:56Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Quantum-inspired optimization for wavelength assignment [51.55491037321065]
We propose and develop a quantum-inspired algorithm for solving the wavelength assignment problem.
Our results pave the way to the use of quantum-inspired algorithms for practical problems in telecommunications.
arXiv Detail & Related papers (2022-11-01T07:52:47Z) - Classically-Boosted Quantum Optimization Algorithm [0.0]
We explore a natural approach to leveraging existing classical techniques to enhance quantum optimization.
Specifically, we run a classical algorithm to find an approximate solution and then use a quantum circuit to search its "neighborhood" for higher-quality solutions.
We demonstrate the applications of CBQOA to Max 3SAT and Max Bisection, and provide empirical evidence that it outperforms previous approaches on these problems.
arXiv Detail & Related papers (2022-03-25T23:36:14Z) - Polynomial unconstrained binary optimisation inspired by optical
simulation [52.11703556419582]
We propose an algorithm inspired by optical coherent Ising machines to solve the problem of unconstrained binary optimization.
We benchmark the proposed algorithm against existing PUBO algorithms, and observe its superior performance.
The application of our algorithm to protein folding and quantum chemistry problems sheds light on the shortcomings of approxing the electronic structure problem by a PUBO problem.
arXiv Detail & Related papers (2021-06-24T16:39:31Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z) - Multi-block ADMM Heuristics for Mixed-Binary Optimization on Classical
and Quantum Computers [3.04585143845864]
We present a decomposition-based approach to extend the applicability of current approaches to "quadratic plus convex" mixed binary optimization problems.
We show that the alternating direction method of multipliers (ADMM) can split the MBO into a binary unconstrained problem (that can be solved with quantum algorithms)
The validity of the approach is then showcased by numerical results obtained on several optimization problems via simulations with VQE and QAOA on the quantum circuits implemented in Qiskit.
arXiv Detail & Related papers (2020-01-07T14:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.