A hybrid Quantum-Classical Algorithm for Mixed-Integer Optimization in Power Systems
- URL: http://arxiv.org/abs/2404.10693v1
- Date: Tue, 16 Apr 2024 16:11:56 GMT
- Title: A hybrid Quantum-Classical Algorithm for Mixed-Integer Optimization in Power Systems
- Authors: Petros Ellinas, Samuel Chevalier, Spyros Chatzivasileiadis,
- Abstract summary: We present a framework for solving power system optimization problems with a Quantum Computer (QC)
Our guiding applications are the optimal transmission switching and the verification of neural networks trained to solve a DC Optimal Power Flow.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Mixed Integer Linear Programming (MILP) can be considered the backbone of the modern power system optimization process, with a large application spectrum, from Unit Commitment and Optimal Transmission Switching to verifying Neural Networks for power system applications. The main issue of these formulations is the computational complexity of the solution algorithms, as they are considered NP-Hard problems. Quantum computing has been tested as a potential solution towards reducing the computational burden imposed by these problems, providing promising results, motivating the can be used to speedup the solution of MILPs. In this work, we present a general framework for solving power system optimization problems with a Quantum Computer (QC), which leverages mathematical tools and QCs' sampling ability to provide accelerated solutions. Our guiding applications are the optimal transmission switching and the verification of neural networks trained to solve a DC Optimal Power Flow. Specifically, using an accelerated version of Benders Decomposition , we split a given MILP into an Integer Master Problem and a linear Subproblem and solve it through a hybrid ``quantum-classical'' approach, getting the best of both worlds. We provide 2 use cases, and benchmark the developed framework against other classical and hybrid methodologies, to demonstrate the opportunities and challenges of hybrid quantum-classical algorithms for power system mixed integer optimization problems.
Related papers
- Hybrid Quantum-HPC Solutions for Max-Cut: Bridging Classical and Quantum Algorithms [0.0]
We develop a theoretical model to analyze the time complexity, scalability, and communication overhead in hybrid systems.
We evaluate QAOA's performance on small-scale Max-Cut instances, benchmarking its runtime, solution accuracy, and resource utilization.
arXiv Detail & Related papers (2024-10-21T04:10:54Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - A Copositive Framework for Analysis of Hybrid Ising-Classical Algorithms [18.075115172621096]
We present a formal analysis of hybrid algorithms in the context of solving mixed-binary quadratic programs via Ising solvers.
We propose to solve this reformulation with a hybrid quantum-classical cutting-plane algorithm.
arXiv Detail & Related papers (2022-07-27T16:47:32Z) - A quantum-inspired tensor network method for constrained combinatorial
optimization problems [5.904219009974901]
We propose a quantum-inspired tensor-network-based algorithm for general locally constrained optimization problems.
Our algorithm constructs a Hamiltonian for the problem of interest, effectively mapping it to a quantum problem.
Our results show the effectiveness of this construction and potential applications.
arXiv Detail & Related papers (2022-03-29T05:44:07Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
We propose a hybrid quantum-classical algorithm for robust fitting.
Our core contribution is a novel robust fitting formulation that solves a sequence of integer programs.
We present results obtained using an actual quantum computer.
arXiv Detail & Related papers (2022-01-25T05:59:24Z) - Hybrid Quantum-Classical Multi-cut Benders Approach with a Power System
Application [0.0]
A quantum-classical (HQC) solution to the Unit Commitment (UC) problem is presented.
The validity and computational viability of the proposed approach are demonstrated using the D-Wave Advantage 4.1 quantum annealer.
arXiv Detail & Related papers (2021-12-10T16:16:09Z) - Polynomial unconstrained binary optimisation inspired by optical
simulation [52.11703556419582]
We propose an algorithm inspired by optical coherent Ising machines to solve the problem of unconstrained binary optimization.
We benchmark the proposed algorithm against existing PUBO algorithms, and observe its superior performance.
The application of our algorithm to protein folding and quantum chemistry problems sheds light on the shortcomings of approxing the electronic structure problem by a PUBO problem.
arXiv Detail & Related papers (2021-06-24T16:39:31Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z) - Multi-block ADMM Heuristics for Mixed-Binary Optimization on Classical
and Quantum Computers [3.04585143845864]
We present a decomposition-based approach to extend the applicability of current approaches to "quadratic plus convex" mixed binary optimization problems.
We show that the alternating direction method of multipliers (ADMM) can split the MBO into a binary unconstrained problem (that can be solved with quantum algorithms)
The validity of the approach is then showcased by numerical results obtained on several optimization problems via simulations with VQE and QAOA on the quantum circuits implemented in Qiskit.
arXiv Detail & Related papers (2020-01-07T14:43:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.