論文の概要: Neural Multi-Quantile Forecasting for Optimal Inventory Management
- arxiv url: http://arxiv.org/abs/2112.05673v1
- Date: Fri, 10 Dec 2021 17:12:52 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-13 16:37:49.170441
- Title: Neural Multi-Quantile Forecasting for Optimal Inventory Management
- Title(参考訳): 最適在庫管理のためのニューラルマルチ量子量予測
- Authors: Federico Garza Ram\'irez
- Abstract要約: 時間的スケーリング(MQ-DRNN-s)を用いた量子レグレッションと拡張型リカレントニューラルネットワークの利用を提案する。
このモデルでは、統計ベンチマークより最大3.2%の性能が向上した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we propose the use of quantile regression and dilated recurrent
neural networks with temporal scaling (MQ-DRNN-s) and apply it to the inventory
management task. This model showed a better performance of up to 3.2\% over a
statistical benchmark (the quantile autoregressive model with exogenous
variables, QAR-X), being better than the MQ-DRNN without temporal scaling by
6\%. The above on a set of 10,000 time series of sales of El Globo over a
53-week horizon using rolling windows of 7-day ahead each week.
- Abstract(参考訳): 本研究では,時間スケール(mq-drnn-s)を用いた分位回帰と拡張リカレントニューラルネットワークの利用を提案し,在庫管理タスクに適用する。
このモデルでは、統計ベンチマーク(qar-xの質的自己回帰モデル)よりも最大3.2\%の性能が向上し、時間スケールを6\%向上させることなくmq-drnnよりも優れていた。
上記は、エル・グロボの1万回の連続販売の53週間の地平線上で、毎週7日間の転がり窓を使用していた。
関連論文リスト
- Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) は、シミュレーションのない方法でニューラルSDEを訓練し、ダイナミックスを通してバックプロパゲーションをバイパスする。
絶対的性能と不確実性予測の観点から,3つの臨床時系列データセットの性能向上を実証した。
論文 参考訳(メタデータ) (2024-10-28T15:54:50Z) - MCDFN: Supply Chain Demand Forecasting via an Explainable Multi-Channel Data Fusion Network Model [0.0]
CNN,Long Short-Term Memory Network (LSTM), Gated Recurrent Units (GRU)を統合したハイブリッドアーキテクチャであるMulti-Channel Data Fusion Network (MCDFN)を紹介する。
我々の比較ベンチマークは、MCDFNが他の7つのディープラーニングモデルより優れていることを示している。
本研究は,需要予測手法を進歩させ,MCDFNをサプライチェーンシステムに統合するための実践的ガイドラインを提供する。
論文 参考訳(メタデータ) (2024-05-24T14:30:00Z) - SVQ: Sparse Vector Quantization for Spatiotemporal Forecasting [23.38628640665113]
本稿では,スパース回帰に基づくベクトル量子化(SVQ)を提案する。
ビデオ予測では、Human、KTH、KittiCaltech-itはMAEを平均9.4%削減し、画質を17.3%改善している。
5つのベンチマークデータセットに関する実証研究により、SVQが最先端の結果を示した。
論文 参考訳(メタデータ) (2023-12-06T10:42:40Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
深層ニューラルネットワークは、気象条件をモデル化するための代替パラダイムを提供する。
MetNet-3は、密度とスパースの両方のデータセンサーから学習し、降水、風、温度、露点を最大24時間前に予測する。
MetNet-3は、それぞれ時間分解能と空間分解能が高く、最大2分と1km、運用遅延は低い。
論文 参考訳(メタデータ) (2023-06-06T07:07:54Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - SpectraNet: Multivariate Forecasting and Imputation under Distribution
Shifts and Missing Data [40.21502451136054]
SpectraNetは時系列予測モデルであり、最近の観測履歴に時間的ダイナミクスと相関関係を動的に推論する。
畳み込みニューラルネットワークは、学習した表現を、成分を逐次混合し、出力を精製することによってマッピングする。
提案手法は, 過去の観測を同時に予測し, 補間し, 生産システムを大幅に単純化することができる。
論文 参考訳(メタデータ) (2022-10-22T18:07:31Z) - MQRetNN: Multi-Horizon Time Series Forecasting with Retrieval
Augmentation [1.8692254863855964]
マルチホライゾン確率的時系列予測は、需要予測のような現実世界のタスクに広く適用可能である。
ニューラルネットワークの時系列予測における最近の研究は、主にSeq2Seqアーキテクチャの使用に焦点を当てている。
本稿では,クロスエンタリティ情報を導入してモデル性能を向上させることを目的として,クロスエンタリティアテンション機構と,どのエンティティを参加させるかを選択する検索機構を提案する。
論文 参考訳(メタデータ) (2022-07-21T14:51:58Z) - Low-bit Quantization of Recurrent Neural Network Language Models Using
Alternating Direction Methods of Multipliers [67.688697838109]
本稿では、乗算器の交互方向法(ADMM)を用いて、スクラッチから量子化RNNLMを訓練する新しい手法を提案する。
2つのタスクの実験から、提案されたADMM量子化は、完全な精度ベースライン RNNLM で最大31倍のモデルサイズ圧縮係数を達成したことが示唆された。
論文 参考訳(メタデータ) (2021-11-29T09:30:06Z) - Network-wide Multi-step Traffic Volume Prediction using Graph
Convolutional Gated Recurrent Neural Network [16.56822335262946]
本稿では,新しいディープラーニングモデルであるGCGRNN(Graph Convolutional Gated Recurrent Neural Network)を提案する。
我々は,カリフォルニア州ロサンゼルスの150個のセンサーから抽出した2つのトラフィックデータセットを,それぞれ1時間15分で評価した。
論文 参考訳(メタデータ) (2021-11-22T16:41:13Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。