論文の概要: MCDFN: Supply Chain Demand Forecasting via an Explainable Multi-Channel Data Fusion Network Model
- arxiv url: http://arxiv.org/abs/2405.15598v4
- Date: Thu, 07 Nov 2024 13:26:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-09 00:49:08.085684
- Title: MCDFN: Supply Chain Demand Forecasting via an Explainable Multi-Channel Data Fusion Network Model
- Title(参考訳): MCDFN: 説明可能なマルチチャネルデータフュージョンネットワークモデルによるサプライチェーン需要予測
- Authors: Md Abrar Jahin, Asef Shahriar, Md Al Amin,
- Abstract要約: CNN,Long Short-Term Memory Network (LSTM), Gated Recurrent Units (GRU)を統合したハイブリッドアーキテクチャであるMulti-Channel Data Fusion Network (MCDFN)を紹介する。
我々の比較ベンチマークは、MCDFNが他の7つのディープラーニングモデルより優れていることを示している。
本研究は,需要予測手法を進歩させ,MCDFNをサプライチェーンシステムに統合するための実践的ガイドラインを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Accurate demand forecasting is crucial for optimizing supply chain management. Traditional methods often fail to capture complex patterns from seasonal variability and special events. Despite advancements in deep learning, interpretable forecasting models remain a challenge. To address this, we introduce the Multi-Channel Data Fusion Network (MCDFN), a hybrid architecture that integrates Convolutional Neural Networks (CNN), Long Short-Term Memory networks (LSTM), and Gated Recurrent Units (GRU) to enhance predictive performance by extracting spatial and temporal features from time series data. Our comparative benchmarking demonstrates that MCDFN outperforms seven other deep-learning models, achieving superior metrics: MSE (23.5738), RMSE (4.8553), MAE (3.9991), and MAPE (20.1575%). Additionally, MCDFN's predictions were statistically indistinguishable from actual values, confirmed by a paired t-test with a 5% p-value and a 10-fold cross-validated statistical paired t-test. We apply explainable AI techniques like ShapTime and Permutation Feature Importance to enhance interpretability. This research advances demand forecasting methodologies and offers practical guidelines for integrating MCDFN into supply chain systems, highlighting future research directions for scalability and user-friendly deployment.
- Abstract(参考訳): サプライチェーン管理の最適化には,正確な需要予測が不可欠だ。
伝統的な手法は季節変動や特別な出来事から複雑なパターンを捉えるのに失敗することが多い。
ディープラーニングの進歩にもかかわらず、解釈可能な予測モデルは依然として課題である。
これを解決するために,畳み込みニューラルネットワーク(CNN),長短期記憶ネットワーク(LSTM),GRU(Gated Recurrent Units)を統合するハイブリッドアーキテクチャであるMCDFNを導入し,時系列データから空間的・時間的特徴を抽出して予測性能を向上させる。
MSE(23.5738)、RMSE(4.8553)、MAE(3.9991)、MAPE(20.1575%)である。
さらに、MCDFNの予測は実際の値と統計的に区別できず、5%のp値と10倍の統計ペアt-testで確認された。
解釈可能性を高めるために、ShapTimeやPermutation Feature Importanceのような説明可能なAI技術を適用します。
本研究は,需要予測手法を推進し,MCDFNをサプライチェーンシステムに統合するための実践的ガイドラインを提供する。
関連論文リスト
- MGCP: A Multi-Grained Correlation based Prediction Network for Multivariate Time Series [54.91026286579748]
本稿では,マルチグラインド相関に基づく予測ネットワークを提案する。
予測性能を高めるために3段階の相関を同時に検討する。
注意機構に基づく予測器と条件判別器を用いて、粗い粒度の予測結果を最適化する。
論文 参考訳(メタデータ) (2024-05-30T03:32:44Z) - Perceiver-based CDF Modeling for Time Series Forecasting [25.26713741799865]
本稿では,時系列データの累積分布関数(CDF)をモデル化するための新しいアーキテクチャであるPerceiver-CDFを提案する。
提案手法は,マルチモーダル時系列予測に適したコプラに基づくアテンション機構と,知覚アーキテクチャを組み合わせたものである。
単調かつマルチモーダルなベンチマークの実験は、最先端の手法よりも20%改善されていることを一貫して示している。
論文 参考訳(メタデータ) (2023-10-03T01:13:17Z) - Probabilistic MIMO U-Net: Efficient and Accurate Uncertainty Estimation
for Pixel-wise Regression [1.4528189330418977]
機械学習における不確実性推定は、予測モデルの信頼性と解釈可能性を高めるための最重要課題である。
画素ワイド回帰タスクに対するMIMO(Multiple-Input Multiple-Output)フレームワークの適応について述べる。
論文 参考訳(メタデータ) (2023-08-14T22:08:28Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイすることの重要性から、マシンラーニングコミュニティから注目を集めている。
本稿では,特徴量の分布をモデル化した不確実な定量化手法を提案する。
バッチアンサンブルニューラルネットワーク(BE-SNN)の構築と機能崩壊問題の克服を目的として,効率的なアンサンブル機構,すなわちバッチアンサンブルを組み込んだ。
We show that BE-SNNs yield superior performance on the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM。
論文 参考訳(メタデータ) (2022-06-26T16:00:22Z) - ClusterQ: Semantic Feature Distribution Alignment for Data-Free
Quantization [111.12063632743013]
本稿では,ClusterQと呼ばれるデータフリーな量子化手法を提案する。
意味的特徴のクラス間分離性を高めるために,特徴分布統計をクラスタ化し,整列する。
また、クラス内分散を組み込んで、クラスワイドモードの崩壊を解決する。
論文 参考訳(メタデータ) (2022-04-30T06:58:56Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
本稿では,Long-Short-Term-Memory(LSTM)とCapsule Networksを1つのネットワークに結合した新しいNNアーキテクチャを提案する。
提案手法は教師なし学習手法を用いて大量のラベル付きトレーニングデータを見つける際の問題を克服する。
論文 参考訳(メタデータ) (2022-02-11T10:33:53Z) - A Statistics and Deep Learning Hybrid Method for Multivariate Time
Series Forecasting and Mortality Modeling [0.0]
Exponential Smoothing Recurrent Neural Network (ES-RNN)は、統計予測モデルとリカレントニューラルネットワークのハイブリッドである。
ES-RNNはMakridakis-4 Forecasting Competitionで絶対誤差を9.4%改善した。
論文 参考訳(メタデータ) (2021-12-16T04:44:19Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。