Deep Learning based Framework for Automatic Diagnosis of Glaucoma based
on analysis of Focal Notching in the Optic Nerve Head
- URL: http://arxiv.org/abs/2112.05748v1
- Date: Fri, 10 Dec 2021 18:58:40 GMT
- Title: Deep Learning based Framework for Automatic Diagnosis of Glaucoma based
on analysis of Focal Notching in the Optic Nerve Head
- Authors: Sneha Dasgupta, Rishav Mukherjee, Kaushik Dutta and Anindya Sen
- Abstract summary: We propose a deep learning-based pipeline for automatic segmentation of optic disc (OD) and optic cup (OC) regions from Digital Fundus Images (DFIs)
This methodology has utilized focal notch analysis of neuroretinal rim along with cup-to-disc ratio values as classifying parameters to enhance the accuracy of Computer-aided design (CAD) systems in analyzing glaucoma.
The proposed pipeline was evaluated on the freely available DRISHTI-GS dataset with a resultant accuracy of 93.33% for detecting Glaucoma from DFIs.
- Score: 0.2580765958706854
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Automatic evaluation of the retinal fundus image is emerging as one of the
most important tools for early detection and treatment of progressive eye
diseases like Glaucoma. Glaucoma results to a progressive degeneration of
vision and is characterized by the deformation of the shape of optic cup and
the degeneration of the blood vessels resulting in the formation of a notch
along the neuroretinal rim. In this paper, we propose a deep learning-based
pipeline for automatic segmentation of optic disc (OD) and optic cup (OC)
regions from Digital Fundus Images (DFIs), thereby extracting distinct features
necessary for prediction of Glaucoma. This methodology has utilized focal notch
analysis of neuroretinal rim along with cup-to-disc ratio values as classifying
parameters to enhance the accuracy of Computer-aided design (CAD) systems in
analyzing glaucoma. Support Vector-based Machine Learning algorithm is used for
classification, which classifies DFIs as Glaucomatous or Normal based on the
extracted features. The proposed pipeline was evaluated on the freely available
DRISHTI-GS dataset with a resultant accuracy of 93.33% for detecting Glaucoma
from DFIs.
Related papers
- Spatial-aware Transformer-GRU Framework for Enhanced Glaucoma Diagnosis
from 3D OCT Imaging [1.8416014644193066]
We present a novel deep learning framework that leverages the diagnostic value of 3D Optical Coherence Tomography ( OCT) imaging for automated glaucoma detection.
We integrate a pre-trained Vision Transformer on retinal data for rich slice-wise feature extraction and a bidirectional Gated Recurrent Unit for capturing inter-slice spatial dependencies.
Experimental results on a large dataset demonstrate the superior performance of the proposed method over state-of-the-art ones.
arXiv Detail & Related papers (2024-03-08T22:25:15Z) - Explainable Artificial Intelligence in Retinal Imaging for the detection
of Systemic Diseases [0.0]
This study aims to evaluate an explainable staged grading process without using deep Convolutional Neural Networks (CNNs) directly.
We have proposed a clinician-in-the-loop assisted intelligent workflow that performs a retinal vascular assessment on the fundus images.
The semiautomatic methodology aims to have a federated approach to AI in healthcare applications with more inputs and interpretations from clinicians.
arXiv Detail & Related papers (2022-12-14T07:00:31Z) - Medical Application of Geometric Deep Learning for the Diagnosis of
Glaucoma [60.42955087779866]
3D scans of the optic nerve head (ONH) were acquired with Spectralis OCT for 477 glaucoma and 2,296 non-glaucoma subjects at the Singapore National Eye Centre.
All volumes were automatically segmented using deep learning to identify 7 major neural and connective tissues.
PointNet was able to provide a robust glaucoma diagnosis solely from the ONH represented as a 3D point cloud.
arXiv Detail & Related papers (2022-04-14T14:55:25Z) - Geometric Deep Learning to Identify the Critical 3D Structural Features
of the Optic Nerve Head for Glaucoma Diagnosis [52.06403518904579]
The optic nerve head (ONH) undergoes complex and deep 3D morphological changes during the development and progression of glaucoma.
We used PointNet and dynamic graph convolutional neural network (DGCNN) to diagnose glaucoma from 3D ONH point clouds.
Our approach may have strong potential to be used in clinical applications for the diagnosis and prognosis of a wide range of ophthalmic disorders.
arXiv Detail & Related papers (2022-04-14T12:52:10Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
glaucoma is challenging to detect since it remains asymptomatic until the symptoms are severe.
Early identification of glaucoma is generally made based on functional, structural, and clinical assessments.
Deep learning methods have partially solved this dilemma by bypassing the marker identification stage and analyzing high-level information directly to classify the data.
arXiv Detail & Related papers (2021-10-04T16:06:49Z) - Automatic Segmentation of the Optic Nerve Head Region in Optical
Coherence Tomography: A Methodological Review [4.777796444711511]
The optic nerve head represents the intraocular section of the optic nerve (ONH)
The advent of optical coherence tomography has enabled the evaluation of novel optic nerve head parameters.
Deep learning-based algorithms provide the highest accuracy, sensitivity and specificity for segmenting the different structures of the ONH.
arXiv Detail & Related papers (2021-09-06T09:45:57Z) - Circumpapillary OCT-Focused Hybrid Learning for Glaucoma Grading Using
Tailored Prototypical Neural Networks [1.1601676598120785]
Glaucoma is one of the leading causes of blindness worldwide.
We propose, for the first time, a novel framework for glaucoma grading using raw circumpapillary B-scans.
In particular, we set out a new OCT-based hybrid network which combines hand-driven and deep learning algorithms.
arXiv Detail & Related papers (2021-06-25T10:53:01Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
We propose a machine learning system for the detection of referable Diabetic Retinopathy in fundus images.
By extracting local information from image patches and combining it efficiently through an attention mechanism, our system is able to achieve high classification accuracy.
We evaluate our approach on publicly available retinal image datasets, in which it exhibits near state-of-the-art performance.
arXiv Detail & Related papers (2021-03-02T13:14:15Z) - Assignment Flow for Order-Constrained OCT Segmentation [0.0]
The identification of retinal layer thicknesses serves as an essential task be done for each patient separately.
The elaboration of automated segmentation models has become an important task in the field of medical image processing.
We propose a novel, purely data driven textitgeometric approach to order-constrained 3D OCT retinal cell layer segmentation
arXiv Detail & Related papers (2020-09-10T01:57:53Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis.
We propose a clinically oriented fundus enhancement network (cofe-Net) to suppress global degradation factors.
Experiments on both synthetic and real images demonstrate that our algorithm effectively corrects low-quality fundus images without losing retinal details.
arXiv Detail & Related papers (2020-05-12T08:01:16Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.