ANA: Ant Nesting Algorithm for Optimizing Real-World Problems
- URL: http://arxiv.org/abs/2112.05839v1
- Date: Sat, 4 Dec 2021 08:55:06 GMT
- Title: ANA: Ant Nesting Algorithm for Optimizing Real-World Problems
- Authors: Deeam Najmadeen Hama Rashid, Tarik A. Rashid and Seyedali Mirjalili
- Abstract summary: A novel intelligent swarm is proposed called ant nesting algorithm (ANA)
The algorithm is inspired by Leptothorax ants and mimics the behavior of ants searching for positions to deposit grains while building a new nest.
ANA is considered a continuous algorithm that updates the search agent position by adding the rate of change.
- Score: 21.95618652596178
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, a novel swarm intelligent algorithm is proposed called ant
nesting algorithm (ANA). The algorithm is inspired by Leptothorax ants and
mimics the behavior of ants searching for positions to deposit grains while
building a new nest. Although the algorithm is inspired by the swarming
behavior of ants, it does not have any algorithmic similarity with the ant
colony optimization (ACO) algorithm. It is worth mentioning that ANA is
considered a continuous algorithm that updates the search agent position by
adding the rate of change (e.g., step or velocity). ANA computes the rate of
change differently as it uses previous, current solutions, fitness values
during the optimization process to generate weights by utilizing the
Pythagorean theorem. These weights drive the search agents during the
exploration and exploitation phases. The ANA algorithm is benchmarked on 26
well-known test functions, and the results are verified by a comparative study
with genetic algorithm (GA), particle swarm optimization (PSO), dragonfly
algorithm (DA), five modified versions of PSO, whale optimization algorithm
(WOA), salp swarm algorithm (SSA), and fitness dependent optimizer (FDO). ANA
outperformances these prominent metaheuristic algorithms on several test cases
and provides quite competitive results. Finally, the algorithm is employed for
optimizing two well-known real-world engineering problems: antenna array design
and frequency-modulated synthesis. The results on the engineering case studies
demonstrate the proposed algorithm's capability in optimizing real-world
problems.
Related papers
- Frog-Snake prey-predation Relationship Optimization (FSRO) : A novel nature-inspired metaheuristic algorithm for feature selection [0.0]
This study proposes the Frog-Snake prey-predation Relationship Optimization (FSRO) algorithm.
It is inspired by the prey-predation relationship between frogs and snakes for application to discrete optimization problems.
The proposed algorithm conducts computational experiments on feature selection using 26 types of machine learning datasets.
arXiv Detail & Related papers (2024-02-13T06:39:15Z) - Performance Evaluation of Evolutionary Algorithms for Analog Integrated
Circuit Design Optimisation [0.0]
An automated sizing approach for analog circuits is presented in this paper.
A targeted search of the search space has been implemented using a particle generation function and a repair-bounds function.
The algorithms are tuned and modified to converge to a better optimal solution.
arXiv Detail & Related papers (2023-10-19T03:26:36Z) - GOOSE Algorithm: A Powerful Optimization Tool for Real-World Engineering Challenges and Beyond [4.939986309170004]
The GOOSE algorithm is benchmarked on 19 well-known test functions.
The proposed algorithm is tested on 10 modern benchmark functions.
The achieved findings attest to the proposed algorithm's superior performance.
arXiv Detail & Related papers (2023-07-19T19:14:25Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Duck swarm algorithm: theory, numerical optimization, and applications [6.244015536594532]
A swarm intelligence-based optimization algorithm, named Duck Swarm Algorithm (DSA), is proposed in this study.
Two rules are modeled from the finding food and foraging of the duck, which corresponds to the exploration and exploitation phases of the proposed DSA.
Results show that DSA is a high-performance optimization method in terms of convergence speed and exploration-exploitation balance.
arXiv Detail & Related papers (2021-12-27T04:53:36Z) - An Accelerated Variance-Reduced Conditional Gradient Sliding Algorithm
for First-order and Zeroth-order Optimization [111.24899593052851]
Conditional gradient algorithm (also known as the Frank-Wolfe algorithm) has recently regained popularity in the machine learning community.
ARCS is the first zeroth-order conditional gradient sliding type algorithms solving convex problems in zeroth-order optimization.
In first-order optimization, the convergence results of ARCS substantially outperform previous algorithms in terms of the number of gradient query oracle.
arXiv Detail & Related papers (2021-09-18T07:08:11Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Dynamic Cat Swarm Optimization Algorithm for Backboard Wiring Problem [0.9990687944474739]
This paper presents a powerful swarm intelligence meta-heuristic optimization algorithm called Dynamic Cat Swarm Optimization.
The proposed algorithm suggests a new method to provide a proper balance between these phases by modifying the selection scheme and the seeking mode of the algorithm.
optimization results show the effectiveness of the proposed algorithm, which ranks first compared to several well-known algorithms available in the literature.
arXiv Detail & Related papers (2021-04-27T19:41:27Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.