Dynamic Cat Swarm Optimization Algorithm for Backboard Wiring Problem
- URL: http://arxiv.org/abs/2107.08908v1
- Date: Tue, 27 Apr 2021 19:41:27 GMT
- Title: Dynamic Cat Swarm Optimization Algorithm for Backboard Wiring Problem
- Authors: Aram Ahmed, Tarik A. Rashid and Soran Saeed
- Abstract summary: This paper presents a powerful swarm intelligence meta-heuristic optimization algorithm called Dynamic Cat Swarm Optimization.
The proposed algorithm suggests a new method to provide a proper balance between these phases by modifying the selection scheme and the seeking mode of the algorithm.
optimization results show the effectiveness of the proposed algorithm, which ranks first compared to several well-known algorithms available in the literature.
- Score: 0.9990687944474739
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents a powerful swarm intelligence meta-heuristic optimization
algorithm called Dynamic Cat Swarm Optimization. The formulation is through
modifying the existing Cat Swarm Optimization. The original Cat Swarm
Optimization suffers from the shortcoming of 'premature convergence', which is
the possibility of entrapment in local optima which usually happens due to the
off-balance between exploration and exploitation phases. Therefore, the
proposed algorithm suggests a new method to provide a proper balance between
these phases by modifying the selection scheme and the seeking mode of the
algorithm. To evaluate the performance of the proposed algorithm, 23 classical
test functions, 10 modern test functions (CEC 2019) and a real world scenario
are used. In addition, the Dimension-wise diversity metric is used to measure
the percentage of the exploration and exploitation phases. The optimization
results show the effectiveness of the proposed algorithm, which ranks first
compared to several well-known algorithms available in the literature.
Furthermore, statistical methods and graphs are also used to further confirm
the outperformance of the algorithm. Finally, the conclusion as well as future
directions to further improve the algorithm are discussed.
Related papers
- Deterministic Trajectory Optimization through Probabilistic Optimal Control [3.2771631221674333]
We propose two new algorithms for discrete-time deterministic finite-horizon nonlinear optimal control problems.
Both algorithms are inspired by a novel theoretical paradigm known as probabilistic optimal control.
We show that the application of this algorithm results in a fixed point of probabilistic policies that converge to the deterministic optimal policy.
arXiv Detail & Related papers (2024-07-18T09:17:47Z) - Performance Evaluation of Evolutionary Algorithms for Analog Integrated
Circuit Design Optimisation [0.0]
An automated sizing approach for analog circuits is presented in this paper.
A targeted search of the search space has been implemented using a particle generation function and a repair-bounds function.
The algorithms are tuned and modified to converge to a better optimal solution.
arXiv Detail & Related papers (2023-10-19T03:26:36Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Optimistic Optimisation of Composite Objective with Exponentiated Update [2.1700203922407493]
The algorithms can be interpreted as the combination of the exponentiated gradient and $p$-norm algorithm.
They achieve a sequence-dependent regret upper bound, matching the best-known bounds for sparse target decision variables.
arXiv Detail & Related papers (2022-08-08T11:29:55Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - High dimensional Bayesian Optimization Algorithm for Complex System in
Time Series [1.9371782627708491]
This paper presents a novel high dimensional Bayesian optimization algorithm.
Based on the time-dependent or dimension-dependent characteristics of the model, the proposed algorithm can reduce the dimension evenly.
To increase the final accuracy of the optimal solution, the proposed algorithm adds a local search based on a series of Adam-based steps at the final stage.
arXiv Detail & Related papers (2021-08-04T21:21:17Z) - Particle Swarm Optimization: Fundamental Study and its Application to
Optimization and to Jetty Scheduling Problems [0.0]
The advantages of evolutionary algorithms with respect to traditional methods have been greatly discussed in the literature.
While particle swarms share such advantages, they outperform evolutionary algorithms in that they require lower computational cost and easier implementation.
This paper does not intend to study their tuning, general-purpose settings are taken from previous studies, and virtually the same algorithm is used to optimize a variety of notably different problems.
arXiv Detail & Related papers (2021-01-25T02:06:30Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.