論文の概要: Efficient Device Scheduling with Multi-Job Federated Learning
- arxiv url: http://arxiv.org/abs/2112.05928v2
- Date: Wed, 15 Dec 2021 11:40:35 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-18 14:07:25.030664
- Title: Efficient Device Scheduling with Multi-Job Federated Learning
- Title(参考訳): マルチジョブフェデレーション学習による効率的なデバイススケジューリング
- Authors: Chendi Zhou, Ji Liu, Juncheng Jia, Jingbo Zhou, Yang Zhou, Huaiyu Dai,
Dejing Dou
- Abstract要約: 本稿では,複数のジョブの並列学習プロセスを実現するための,新しいマルチジョブフェデレーション学習フレームワークを提案する。
コストを最小化しつつ、複数のジョブに対してデバイスをスケジュールする強化学習法とベイズ最適化法を提案する。
提案手法は,トレーニング時間(最大8.67倍高速)と精度(最大44.6%高)において,ベースラインアプローチよりも有意に優れていた。
- 参考スコア(独自算出の注目度): 64.21733164243781
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent years have witnessed a large amount of decentralized data in multiple
(edge) devices of end-users, while the aggregation of the decentralized data
remains difficult for machine learning jobs due to laws or regulations.
Federated Learning (FL) emerges as an effective approach to handling
decentralized data without sharing the sensitive raw data, while
collaboratively training global machine learning models. The servers in FL need
to select (and schedule) devices during the training process. However, the
scheduling of devices for multiple jobs with FL remains a critical and open
problem. In this paper, we propose a novel multi-job FL framework to enable the
parallel training process of multiple jobs. The framework consists of a system
model and two scheduling methods. In the system model, we propose a parallel
training process of multiple jobs, and construct a cost model based on the
training time and the data fairness of various devices during the training
process of diverse jobs. We propose a reinforcement learning-based method and a
Bayesian optimization-based method to schedule devices for multiple jobs while
minimizing the cost. We conduct extensive experimentation with multiple jobs
and datasets. The experimental results show that our proposed approaches
significantly outperform baseline approaches in terms of training time (up to
8.67 times faster) and accuracy (up to 44.6% higher).
- Abstract(参考訳): 近年、エンドユーザーの複数の(エッジ)デバイスで大量の分散データを目撃しているが、分散データの集約は法律や規制によって機械学習ジョブでは依然として困難である。
フェデレートラーニング(FL)は、センシティブな生データを共有せずに分散データを扱うための効果的なアプローチとして現れ、グローバル機械学習モデルを協調的にトレーニングする。
flのサーバは、トレーニングプロセス中にデバイスを選択(およびスケジュール)する必要がある。
しかしながら、flを用いた複数ジョブ用のデバイスのスケジューリングは、依然として重要かつオープンな問題である。
本稿では,複数のジョブの並列トレーニングプロセスを実現するための,新しいマルチジョブFLフレームワークを提案する。
フレームワークはシステムモデルと2つのスケジューリング方法で構成される。
システムモデルでは、複数のジョブの並列トレーニングプロセスを提案し、多様なジョブのトレーニングプロセスにおいて、様々なデバイスのトレーニング時間とデータフェアネスに基づいてコストモデルを構築する。
コストを最小化しつつ、複数のジョブに対してデバイスをスケジュールする強化学習法とベイズ最適化法を提案する。
複数のジョブとデータセットで広範な実験を行う。
実験の結果,提案手法はトレーニング時間(最大8.67倍)と精度(最大44.6%)において,ベースラインアプローチよりも有意に優れていた。
関連論文リスト
- FedAST: Federated Asynchronous Simultaneous Training [27.492821176616815]
フェデレートラーニング(FL)は、デバイスやクライアントがプライベートデータを共有せずに機械学習(ML)モデルを協調的にトレーニングすることを可能にする。
FLにおける既存の作業の多くは、1つのタスクのモデルを効率的に学習することに集中しています。
本稿では,共通データセットを用いた複数のFLモデルの同時学習を提案する。
論文 参考訳(メタデータ) (2024-06-01T05:14:20Z) - Efficient Asynchronous Federated Learning with Sparsification and
Quantization [55.6801207905772]
フェデレートラーニング(FL)は、生データを転送することなく、機械学習モデルを協調的にトレーニングするために、ますます注目を集めている。
FLは一般的に、モデルトレーニングの全プロセス中にパラメータサーバーと多数のエッジデバイスを利用する。
TEASQ-Fedは、エッジデバイスを利用して、タスクに積極的に適用することで、トレーニングプロセスに非同期に参加する。
論文 参考訳(メタデータ) (2023-12-23T07:47:07Z) - Speed Up Federated Learning in Heterogeneous Environment: A Dynamic
Tiering Approach [5.504000607257414]
フェデレートラーニング(FL)は、トレーニングデータを分散化してプライベートにしながら、モデルを協調的にトレーニングすることを可能にする。
FLを用いたモデルのトレーニングにおける重要な障害の1つは、様々なタスクサイズだけでなく、不均一な計算と通信能力を持つデバイスのリソース制約である。
本稿では、動的タイリングに基づくフェデレート学習(DTFL)システムを提案する。このシステムでは、遅いクライアントがモデルの一部を動的にサーバにオフロードし、リソース制約を緩和し、トレーニングを高速化する。
論文 参考訳(メタデータ) (2023-12-09T19:09:19Z) - Multi-Job Intelligent Scheduling with Cross-Device Federated Learning [65.69079337653994]
フェデレートラーニング(FL)は、センシティブな生データを共有せずに、協調的なグローバル機械学習モデルのトレーニングを可能にする。
本稿では,複数のジョブを並列にトレーニングできる新しいマルチジョブFLフレームワークを提案する。
本稿では,元来の強化学習に基づくスケジューリング手法と元来のベイズ最適化に基づくスケジューリング手法を含む,複数のスケジューリング手法に基づく新しいインテリジェントスケジューリング手法を提案する。
論文 参考訳(メタデータ) (2022-11-24T06:17:40Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
本稿では,FL,メタラーニング,フェデレーションメタラーニング(FedMeta)について概観する。
他のチュートリアルと異なり、私たちの目標はFL、メタラーニング、FedMetaの方法論をどのように設計、最適化、進化させ、無線ネットワーク上で応用するかを探ることです。
論文 参考訳(メタデータ) (2022-10-24T10:59:29Z) - Decentralized Training of Foundation Models in Heterogeneous
Environments [77.47261769795992]
GPT-3 や PaLM のようなトレーニング基盤モデルは、非常に高価である。
ヘテロジニアスネットワーク上での分散型システムにおけるモデル並列化を用いた大規模基盤モデルのトレーニングに関する最初の研究について述べる。
論文 参考訳(メタデータ) (2022-06-02T20:19:51Z) - Motivating Learners in Multi-Orchestrator Mobile Edge Learning: A
Stackelberg Game Approach [54.28419430315478]
Mobile Edge Learningは、異種エッジデバイス上で機械学習モデルの分散トレーニングを可能にする。
MELでは、十分なトレーニングデータやコンピューティングリソースを入手することなく、トレーニング性能が低下する。
そこで我々は2ラウンドのStackelbergゲームとしてオーケストレータとラーナーの相互作用を定式化するインセンティブ機構を提案する。
論文 参考訳(メタデータ) (2021-09-25T17:27:48Z) - Scheduling Policy and Power Allocation for Federated Learning in NOMA
Based MEC [21.267954799102874]
Federated Learning(FL)は、データ分散を維持しながらモデルを集中的にトレーニングできる、高度に追求された機械学習技術である。
重み付き和データレートを最大化するために、非直交多重アクセス(NOMA)設定を用いた新しいスケジューリングポリシーと電力割当方式を提案する。
シミュレーションの結果,提案手法は,NOMAベースの無線ネットワークにおいて高いFLテスト精度を実現するのに有効であることがわかった。
論文 参考訳(メタデータ) (2020-06-21T23:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。