論文の概要: You Only Need End-to-End Training for Long-Tailed Recognition
- arxiv url: http://arxiv.org/abs/2112.05958v2
- Date: Tue, 14 Dec 2021 13:55:21 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-15 12:38:37.666838
- Title: You Only Need End-to-End Training for Long-Tailed Recognition
- Title(参考訳): 長期学習のためのエンド・ツー・エンドトレーニング
- Authors: Zhiwei Zhang, Hongsheng Li
- Abstract要約: クロスエントロピー損失は、不均衡なデータに非常に相関した特徴をもたらす傾向にある。
ブロックベース相対平衡バッチサンプリング(B3RS)とバッチ埋め込みトレーニング(BET)の2つの新しいモジュールを提案する。
CIFAR-LT と ImageNet-LT の長期分類ベンチマークによる実験結果から,本手法の有効性が示された。
- 参考スコア(独自算出の注目度): 75.0174859465876
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The generalization gap on the long-tailed data sets is largely owing to most
categories only occupying a few training samples. Decoupled training achieves
better performance by training backbone and classifier separately. What causes
the poorer performance of end-to-end model training (e.g., logits margin-based
methods)? In this work, we identify a key factor that affects the learning of
the classifier: the channel-correlated features with low entropy before
inputting into the classifier. From the perspective of information theory, we
analyze why cross-entropy loss tends to produce highly correlated features on
the imbalanced data. In addition, we theoretically analyze and prove its
impacts on the gradients of classifier weights, the condition number of
Hessian, and logits margin-based approach. Therefore, we firstly propose to use
Channel Whitening to decorrelate ("scatter") the classifier's inputs for
decoupling the weight update and reshaping the skewed decision boundary, which
achieves satisfactory results combined with logits margin-based method.
However, when the number of minor classes are large, batch imbalance and more
participation in training cause over-fitting of the major classes. We also
propose two novel modules, Block-based Relatively Balanced Batch Sampler (B3RS)
and Batch Embedded Training (BET) to solve the above problems, which makes the
end-to-end training achieve even better performance than decoupled training.
Experimental results on the long-tailed classification benchmarks, CIFAR-LT and
ImageNet-LT, demonstrate the effectiveness of our method.
- Abstract(参考訳): 長い尾を持つデータセットの一般化のギャップは、ほとんどのカテゴリが少数のトレーニングサンプルを占有しているためである。
分離トレーニングは、バックボーンと分類器を別々にトレーニングすることで、よりよいパフォーマンスを達成する。
エンド・ツー・エンドモデルのトレーニング(例えばlogits margin-based method)のパフォーマンスが低くなる原因は何でしょう?
本研究は,分類器の学習に影響を与える重要な要因である,低エントロピーのチャネル関連特徴を,分類器に入力する前に同定する。
情報理論の観点からは, クロスエントロピー損失が不均衡データに対して高い相関性を持つ傾向がある理由を考察する。
さらに,分類器重みの勾配,ヘシアンの条件数,ロジッツマージンに基づくアプローチについて理論的に解析し,その影響を証明した。
そこで我々は,まずChannel Whiteningを用いて,重み付けをデカップリングし,スキュード決定境界を再構成するための分類器の入力をデコレーションし,ロジットマージン法と組み合わせて満足な結果を得る方法を提案する。
しかし、マイナークラス数が大きければ、バッチ不均衡とトレーニング参加の増加が、主要なクラスの過剰フィットの原因となる。
また,上記の問題を解決するために,ブロックベース相対バランスバッチサンプリング(b3rs)とバッチ組込みトレーニング(bet)という2つのモジュールを提案する。
CIFAR-LT と ImageNet-LT の長期分類ベンチマークによる実験結果から,本手法の有効性が示された。
関連論文リスト
- Probabilistic Contrastive Learning for Long-Tailed Visual Recognition [78.70453964041718]
細長い分布は、少数の少数派が限られた数のサンプルを含む実世界のデータにしばしば現れる。
近年の研究では、教師付きコントラスト学習がデータ不均衡を緩和する有望な可能性を示していることが明らかになっている。
本稿では,特徴空間の各クラスからのサンプルデータ分布を推定する確率論的コントラスト学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-11T13:44:49Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
我々は,クラスごとのサンプル数に関する事前知識を必要とせず,シンプルなロジットアプローチ(LORT)を開発した。
提案手法は,CIFAR100-LT, ImageNet-LT, iNaturalist 2018など,様々な不均衡データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-01T03:27:08Z) - Bias Mitigating Few-Shot Class-Incremental Learning [17.185744533050116]
クラス増分学習は,限定された新規クラスサンプルを用いて,新規クラスを継続的に認識することを目的としている。
最近の手法では,段階的なセッションで特徴抽出器を微調整することにより,ベースクラスとインクリメンタルクラスの精度の不均衡を緩和している。
本研究では,FSCIL問題におけるモデルバイアスを緩和する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-01T10:37:41Z) - Class Instance Balanced Learning for Long-Tailed Classification [0.0]
ロングテール画像分類タスクは、トレーニングデータのクラス周波数における大きな不均衡を扱う。
従来のアプローチでは、クロスエントロピーとコントラスト学習を組み合わせることで、長いタスクのパフォーマンスが向上することが示されている。
学習バッチにおけるクラスインスタンスの頻度の関数として,クロスエントロピーと対照的な損失の相対的寄与を重み付けする新しいクラスインスタンス平衡損失(CIBL)を提案する。
論文 参考訳(メタデータ) (2023-07-11T15:09:10Z) - Leveraging Angular Information Between Feature and Classifier for
Long-tailed Learning: A Prediction Reformulation Approach [90.77858044524544]
分類器の重みを再バランスすることなく、包含角度で認識確率を再構成する。
予測形式再構成の性能向上に着想を得て, この角度予測の異なる特性について検討する。
CIFAR10/100-LT と ImageNet-LT を事前学習することなく、ピアメソッド間で最高の性能を得ることができる。
論文 参考訳(メタデータ) (2022-12-03T07:52:48Z) - Learning to Re-weight Examples with Optimal Transport for Imbalanced
Classification [74.62203971625173]
不均衡データは、ディープラーニングに基づく分類モデルに課題をもたらす。
不均衡なデータを扱うための最も広く使われているアプローチの1つは、再重み付けである。
本稿では,分布の観点からの最適輸送(OT)に基づく新しい再重み付け手法を提案する。
論文 参考訳(メタデータ) (2022-08-05T01:23:54Z) - Relieving Long-tailed Instance Segmentation via Pairwise Class Balance [85.53585498649252]
長い尾のインスタンスセグメンテーションは、クラス間のトレーニングサンプルの極端な不均衡のために難しいタスクである。
尾のついたものに対して、(大多数のサンプルを含む)ヘッドクラスの深刻なバイアスを引き起こす。
そこで本研究では,学習中の予測嗜好を蓄積するために,学習中に更新される混乱行列上に構築された新しいPairwise Class Balance(PCB)手法を提案する。
論文 参考訳(メタデータ) (2022-01-08T07:48:36Z) - Few-shot Action Recognition with Prototype-centered Attentive Learning [88.10852114988829]
2つの新しい構成要素からなるプロトタイプ中心型注意学習(pal)モデル。
まず,従来のクエリ中心学習目標を補完するために,プロトタイプ中心のコントラスト学習損失を導入する。
第二に、PALは注意深いハイブリッド学習機構を統合しており、アウトレーヤの負の影響を最小限に抑えることができる。
論文 参考訳(メタデータ) (2021-01-20T11:48:12Z) - The Devil is the Classifier: Investigating Long Tail Relation
Classification with Decoupling Analysis [36.298869931803836]
ロングテール関係分類は、ヘッドクラスがトレーニングフェーズを支配しているため、難しい問題である。
そこで本研究では,関係を自動的に集約することで,ソフトウェイトを割り当てる,注意関係ルーティング付きロバストな分類器を提案する。
論文 参考訳(メタデータ) (2020-09-15T12:47:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。