論文の概要: Privacy Amplification via Shuffling for Linear Contextual Bandits
- arxiv url: http://arxiv.org/abs/2112.06008v1
- Date: Sat, 11 Dec 2021 15:23:28 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-17 10:55:21.511678
- Title: Privacy Amplification via Shuffling for Linear Contextual Bandits
- Title(参考訳): 線形コンテキストバンディットのシャッフルによるプライバシ増幅
- Authors: Evrard Garcelon and Kamalika Chaudhuri and Vianney Perchet and Matteo
Pirotta
- Abstract要約: ディファレンシャルプライバシ(DP)を用いた文脈線形バンディット問題について検討する。
プライバシのシャッフルモデルを利用して,JDP と LDP のプライバシ/ユーティリティトレードオフを実現することができることを示す。
以上の結果から,ローカルプライバシを保ちながらシャッフルモデルを活用することで,JDPとDPのトレードオフを得ることが可能であることが示唆された。
- 参考スコア(独自算出の注目度): 51.94904361874446
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contextual bandit algorithms are widely used in domains where it is desirable
to provide a personalized service by leveraging contextual information, that
may contain sensitive information that needs to be protected. Inspired by this
scenario, we study the contextual linear bandit problem with differential
privacy (DP) constraints. While the literature has focused on either
centralized (joint DP) or local (local DP) privacy, we consider the shuffle
model of privacy and we show that is possible to achieve a privacy/utility
trade-off between JDP and LDP. By leveraging shuffling from privacy and
batching from bandits, we present an algorithm with regret bound
$\widetilde{\mathcal{O}}(T^{2/3}/\varepsilon^{1/3})$, while guaranteeing both
central (joint) and local privacy. Our result shows that it is possible to
obtain a trade-off between JDP and LDP by leveraging the shuffle model while
preserving local privacy.
- Abstract(参考訳): コンテキストバンディットアルゴリズムは、保護が必要な機密情報を含むコンテキスト情報を利用してパーソナライズされたサービスを提供することが望ましいドメインで広く使われている。
このシナリオに触発されて,差分プライバシー(DP)制約を伴う文脈線形帯域問題について検討した。
文献は、中央集権的(共同DP)か地方(ローカルDP)のプライバシに重点を置いているが、プライバシーのシャッフルモデルを考えると、JDPとDPのプライバシ/ユーティリティトレードオフを実現することが可能であることを示す。
プライバシからシャッフルし、バンディットからバッチ化することで、セントラル(ジョイント)とローカルプライバシの両方を保証しながら、後悔に縛られた$\widetilde{\mathcal{o}}(t^{2/3}/\varepsilon^{1/3})$を持つアルゴリズムを提案する。
以上の結果から,ローカルプライバシを保ちながらシャッフルモデルを活用することで,JDPとDPのトレードオフを得ることが可能であることが示唆された。
関連論文リスト
- Enhancing Feature-Specific Data Protection via Bayesian Coordinate Differential Privacy [55.357715095623554]
ローカル微分プライバシー(LDP)は、ユーザーが外部の関係者を信頼することなく、強力なプライバシー保証を提供する。
本稿では,ベイジアン・フレームワークであるベイジアン・コーディネート・ディファレンシャル・プライバシ(BCDP)を提案する。
論文 参考訳(メタデータ) (2024-10-24T03:39:55Z) - Masked Differential Privacy [64.32494202656801]
本稿では,差分プライバシーを適用した機密領域を制御できる「マスク型差分プライバシー(DP)」という効果的なアプローチを提案する。
提案手法はデータに基づいて選択的に動作し,DPアプリケーションや差分プライバシーをデータサンプル内の他のプライバシー技術と組み合わせることなく,非感性時間領域を定義できる。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - Convergent Differential Privacy Analysis for General Federated Learning: the $f$-DP Perspective [57.35402286842029]
フェデレートラーニング(Federated Learning, FL)は、ローカルプライバシを重視した効率的な協調トレーニングパラダイムである。
ディファレンシャルプライバシ(DP)は、私的保護の信頼性を捕捉し、保証するための古典的なアプローチである。
論文 参考訳(メタデータ) (2024-08-28T08:22:21Z) - Deciphering the Interplay between Local Differential Privacy, Average Bayesian Privacy, and Maximum Bayesian Privacy [5.622065847054885]
我々はベイジアン・プライバシを導入し、LDPとベイジアン・プライバシ・トレードオフに関する新たな洞察を公表した。
私たちの研究は、将来の経験的探索の基盤となるだけでなく、プライバシー保護アルゴリズムの設計を促進することを約束しています。
論文 参考訳(メタデータ) (2024-03-25T10:06:45Z) - On Differentially Private Federated Linear Contextual Bandits [9.51828574518325]
我々は、差分プライバシーの下で、クロスサイロフェデレーション線形文脈帯域問題(LCB)を考える。
現状の3つの課題は, (i) 主張されたプライバシ保護の失敗, (ii) ノイズの計算ミスによる不正確な後悔,である。
我々は,信頼されたサーバを使わずに,アルゴリズムがほぼ最適であることを示す。
論文 参考訳(メタデータ) (2023-02-27T16:47:49Z) - Generalized Linear Bandits with Local Differential Privacy [4.922800530841394]
パーソナライズドメディカルやオンライン広告などの多くのアプリケーションは、効果的な学習のために個人固有の情報を活用する必要がある。
これは、局所微分プライバシー(LDP)というプライバシーの厳格な概念を文脈的盗賊に導入する動機となっている。
本稿では,一般線形バンドレットに対するLDPアルゴリズムを設計し,非プライバシ設定と同じ後悔点を実現する。
論文 参考訳(メタデータ) (2021-06-07T06:42:00Z) - Local Differential Privacy for Regret Minimization in Reinforcement
Learning [33.679678503441565]
有限水平マルコフ決定過程(MDP)の文脈におけるプライバシーの研究
ローカルディファレンシャルプライバシ(LDP)フレームワークを活用することで、RLのプライバシの概念を定式化する。
本稿では,$varepsilon$-LDP要求を満たす楽観的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-15T14:13:26Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
エピソード強化学習(RL)のためのプライバシー保護探索ポリシーを設計する。
まず、共同微分プライバシー(JDP)の概念を用いた有意義なプライバシー定式化を提供する。
そこで我々は,強いPACと後悔境界を同時に達成し,JDP保証を享受する,プライベートな楽観主義に基づく学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-09-18T20:18:35Z) - Successive Refinement of Privacy [38.20887036580742]
本研究は、局所微分プライバシー(LDP)を実現するために、どの程度ランダム性が必要かを検討する。
モチベーションシナリオは、複数のアナリストに複数のレベルのプライバシを提供することである。
各ユーザのプライバシーを維持しながら、ランダムなキーを時間の経過とともに再利用できないことを示す。
論文 参考訳(メタデータ) (2020-05-24T04:16:01Z) - PGLP: Customizable and Rigorous Location Privacy through Policy Graph [68.3736286350014]
我々はPGLPと呼ばれる新しい位置プライバシーの概念を提案し、カスタマイズ可能で厳格なプライバシー保証を備えたプライベートロケーションをリリースするためのリッチなインターフェースを提供する。
具体的には,ユーザの位置プライバシー要件を,表現的かつカスタマイズ可能なテキスト配置ポリシーグラフを用いて形式化する。
第3に、位置露光の検出、ポリシーグラフの修復、およびカスタマイズ可能な厳格な位置プライバシーを備えたプライベートな軌跡リリースをパイプライン化する、プライベートな位置トレースリリースフレームワークを設計する。
論文 参考訳(メタデータ) (2020-05-04T04:25:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。