論文の概要: Generalized Linear Bandits with Local Differential Privacy
- arxiv url: http://arxiv.org/abs/2106.03365v1
- Date: Mon, 7 Jun 2021 06:42:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-08 18:33:05.766601
- Title: Generalized Linear Bandits with Local Differential Privacy
- Title(参考訳): 局所微分プライバシーを持つ一般化線形バンディット
- Authors: Yuxuan Han, Zhipeng Liang, Yang Wang, Jiheng Zhang
- Abstract要約: パーソナライズドメディカルやオンライン広告などの多くのアプリケーションは、効果的な学習のために個人固有の情報を活用する必要がある。
これは、局所微分プライバシー(LDP)というプライバシーの厳格な概念を文脈的盗賊に導入する動機となっている。
本稿では,一般線形バンドレットに対するLDPアルゴリズムを設計し,非プライバシ設定と同じ後悔点を実現する。
- 参考スコア(独自算出の注目度): 4.922800530841394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contextual bandit algorithms are useful in personalized online
decision-making. However, many applications such as personalized medicine and
online advertising require the utilization of individual-specific information
for effective learning, while user's data should remain private from the server
due to privacy concerns. This motivates the introduction of local differential
privacy (LDP), a stringent notion in privacy, to contextual bandits. In this
paper, we design LDP algorithms for stochastic generalized linear bandits to
achieve the same regret bound as in non-privacy settings. Our main idea is to
develop a stochastic gradient-based estimator and update mechanism to ensure
LDP. We then exploit the flexibility of stochastic gradient descent (SGD),
whose theoretical guarantee for bandit problems is rarely explored, in dealing
with generalized linear bandits. We also develop an estimator and update
mechanism based on Ordinary Least Square (OLS) for linear bandits. Finally, we
conduct experiments with both simulation and real-world datasets to demonstrate
the consistently superb performance of our algorithms under LDP constraints
with reasonably small parameters $(\varepsilon, \delta)$ to ensure strong
privacy protection.
- Abstract(参考訳): コンテキストバンディットアルゴリズムは、パーソナライズされたオンライン意思決定に有用である。
しかし、パーソナライズされた医療やオンライン広告などの多くのアプリケーションは、個人の情報を効果的に学習するために利用する必要がある。
これは、局所微分プライバシー(LDP)というプライバシーの厳格な概念を文脈的盗賊に導入する動機となっている。
本稿では,確率的一般化線形帯域幅に対する LDP アルゴリズムを設計し,非プライバシ設定と同じ後悔点を実現する。
本研究の目的は, 確率勾配に基づく推定器と更新機構を開発し, LDPを確実にすることである。
次に,一般線形バンディットを扱う場合,バンディット問題に対する理論的保証がほとんど検討されない確率勾配降下 (sgd) の柔軟性を利用する。
また,線形包帯に対する正規最小広場(OLS)に基づく推定器と更新機構も開発した。
最後に、シミュレーションと実世界のデータセットの両方を用いて実験を行い、LDP制約下でのアルゴリズムの一貫して超越した性能を合理的に小さなパラメータ$(\varepsilon, \delta)$で実証し、強力なプライバシ保護を保証する。
関連論文リスト
- Enhancing Feature-Specific Data Protection via Bayesian Coordinate Differential Privacy [55.357715095623554]
ローカル微分プライバシー(LDP)は、ユーザーが外部の関係者を信頼することなく、強力なプライバシー保証を提供する。
本稿では,ベイジアン・フレームワークであるベイジアン・コーディネート・ディファレンシャル・プライバシ(BCDP)を提案する。
論文 参考訳(メタデータ) (2024-10-24T03:39:55Z) - FLIPHAT: Joint Differential Privacy for High Dimensional Sparse Linear Bandits [8.908421753758475]
高次元スパース線形帯域は、シーケンシャルな意思決定問題の効率的なモデルとして機能する。
データプライバシの懸念により、我々は、共同でプライベートな高次元の疎線形帯域について検討する。
FLIPHATは,プライバシパラメータの点で最適に後悔することを示す。
論文 参考訳(メタデータ) (2024-05-22T22:19:12Z) - Chained-DP: Can We Recycle Privacy Budget? [18.19895364709435]
本稿では,ユーザが順次データアグリゲーションを実行し,プライバシ予算を再利用することのできる,新しいChained-DPフレームワークを提案する。
逐次ゲームの数学的性質を示し、そのナッシュ平衡を解き、証明可能な経済特性を持つインセンティブメカニズムを設計する。
提案手法の有効性を数値シミュレーションにより検証し,従来のLPP機構と比較して,プライバシ予算の大幅な削減と推定誤差の低減を図った。
論文 参考訳(メタデータ) (2023-09-12T08:07:59Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
モデルパラメータを歪ませることでプライバシを保護する保護機構の一般学習フレームワークを提案する。
フェデレートされた学習における各コミュニケーションラウンドにおいて、各クライアント上の各モデルパラメータに対して、パーソナライズされたユーティリティプライバシトレードオフを実現することができる。
論文 参考訳(メタデータ) (2023-05-24T13:44:02Z) - Differentially Private Stochastic Gradient Descent with Low-Noise [49.981789906200035]
現代の機械学習アルゴリズムは、データからきめ細かい情報を抽出して正確な予測を提供することを目的としており、プライバシー保護の目標と矛盾することが多い。
本稿では、プライバシを保ちながら優れたパフォーマンスを確保するために、プライバシを保存する機械学習アルゴリズムを開発することの実践的および理論的重要性について論じる。
論文 参考訳(メタデータ) (2022-09-09T08:54:13Z) - On Private Online Convex Optimization: Optimal Algorithms in
$\ell_p$-Geometry and High Dimensional Contextual Bandits [9.798304879986604]
本研究では,分散分布からサンプリングしたストリーミングデータを用いてDPの凸最適化問題について検討し,逐次到着する。
また、プライベート情報に関連するパラメータを更新し、新しいデータ(しばしばオンラインアルゴリズム)に基づいてリリースする連続リリースモデルについても検討する。
提案アルゴリズムは,1pleq 2$のときの最適余剰リスクと,2pleqinfty$のときの非プライベートな場合の最先端の余剰リスクを線形時間で達成する。
論文 参考訳(メタデータ) (2022-06-16T12:09:47Z) - Differentially Private Reinforcement Learning with Linear Function
Approximation [3.42658286826597]
差分プライバシー(DP)制約下における有限水平マルコフ決定過程(MDP)における後悔の最小化について検討する。
本研究の結果は, 線形混合MDPにおける正則化条件の変更による学習の一般的な手順によって得られた。
論文 参考訳(メタデータ) (2022-01-18T15:25:24Z) - Privacy Amplification via Shuffling for Linear Contextual Bandits [51.94904361874446]
ディファレンシャルプライバシ(DP)を用いた文脈線形バンディット問題について検討する。
プライバシのシャッフルモデルを利用して,JDP と LDP のプライバシ/ユーティリティトレードオフを実現することができることを示す。
以上の結果から,ローカルプライバシを保ちながらシャッフルモデルを活用することで,JDPとDPのトレードオフを得ることが可能であることが示唆された。
論文 参考訳(メタデータ) (2021-12-11T15:23:28Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
エピソード強化学習(RL)のためのプライバシー保護探索ポリシーを設計する。
まず、共同微分プライバシー(JDP)の概念を用いた有意義なプライバシー定式化を提供する。
そこで我々は,強いPACと後悔境界を同時に達成し,JDP保証を享受する,プライベートな楽観主義に基づく学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-09-18T20:18:35Z) - Locally Differentially Private (Contextual) Bandits Learning [55.63825598391525]
本論文では,局所的差分性(LDP)バンディット学習について検討する。
我々は,DP保証を用いて,文脈自由な帯域幅学習問題を解くことのできる,シンプルなブラックボックス削減フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-01T04:02:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。