Quantum Gaussian filter for exploring ground-state properties
- URL: http://arxiv.org/abs/2112.06026v2
- Date: Fri, 16 Sep 2022 14:49:04 GMT
- Title: Quantum Gaussian filter for exploring ground-state properties
- Authors: Min-Quan He, Dan-Bo Zhang, Z. D. Wang
- Abstract summary: Filter methods realize a projection from a superposed quantum state onto a target state, which can be efficient if two states have sufficient overlap.
We propose a quantum Gaussian filter (QGF) with the filter operator being a Gaussian function of the system Hamiltonian.
A hybrid quantum-classical algorithm feasible on near-term quantum computers is developed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Filter methods realize a projection from a superposed quantum state onto a
target state, which can be efficient if two states have sufficient overlap.
Here we propose a quantum Gaussian filter (QGF) with the filter operator being
a Gaussian function of the system Hamiltonian. A hybrid quantum-classical
algorithm feasible on near-term quantum computers is developed, which
implements the quantum Gaussian filter as a linear combination of Hamiltonian
evolution at various times. Remarkably, the linear combination coefficients are
determined classically and can be optimized in the postprocessing procedure.
Compared to the existing filter algorithms whose coefficients are given in
advance, our method is more flexible in practice under given quantum resources
with the help of postprocessing on classical computers. We demonstrate the
quantum Gaussian filter algorithm for the quantum Ising model with numeral
simulations under noises. We also propose an alternative full quantum approach
that implements a QGF with an ancillary continuous-variable mode.
Related papers
- Optimizing Unitary Coupled Cluster Wave Functions on Quantum Hardware: Error Bound and Resource-Efficient Optimizer [0.0]
We study the projective quantum eigensolver (PQE) approach to optimizing unitary coupled cluster wave functions on quantum hardware.
The algorithm uses projections of the Schr"odinger equation to efficiently bring the trial state closer to an eigenstate of the Hamiltonian.
We present numerical evidence of superiority over both the optimization introduced in arXiv:2102.00345 and VQE optimized using the Broyden Fletcher Goldfarb Shanno (BFGS) method.
arXiv Detail & Related papers (2024-10-19T15:03:59Z) - Efficient charge-preserving excited state preparation with variational quantum algorithms [33.03471460050495]
We introduce a charge-preserving VQD (CPVQD) algorithm, designed to incorporate symmetry and the corresponding conserved charge into the VQD framework.
Results show applications in high-energy physics, nuclear physics, and quantum chemistry.
arXiv Detail & Related papers (2024-10-18T10:30:14Z) - Benchmarking Variational Quantum Eigensolvers for Entanglement Detection in Many-Body Hamiltonian Ground States [37.69303106863453]
Variational quantum algorithms (VQAs) have emerged in recent years as a promise to obtain quantum advantage.
We use a specific class of VQA named variational quantum eigensolvers (VQEs) to benchmark them at entanglement witnessing and entangled ground state detection.
Quantum circuits whose structure is inspired by the Hamiltonian interactions presented better results on cost function estimation than problem-agnostic circuits.
arXiv Detail & Related papers (2024-07-05T12:06:40Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Enhancing Scalability of Quantum Eigenvalue Transformation of Unitary Matrices for Ground State Preparation through Adaptive Finer Filtering [0.13108652488669736]
Hamiltonian simulation is a domain where quantum computers have the potential to outperform classical counterparts.
One of the main challenges of such quantum algorithms is up-scaling the system size.
We present an approach to improve the scalability of eigenspace filtering for the ground state preparation of a given Hamiltonian.
arXiv Detail & Related papers (2024-01-17T09:52:24Z) - An occupation number quantum subspace expansion approach to compute the single-particle Green function: an opportunity for noise filtering [0.0]
We introduce a hybrid quantum-classical algorithm to compute the Green function for strongly correlated electrons on noisy quantum devices.
The technique allows for noise filtering, a useful feature for NISQ devices.
arXiv Detail & Related papers (2023-12-21T00:21:17Z) - Monte Carlo Graph Search for Quantum Circuit Optimization [26.114550071165628]
This work proposes a quantum architecture search algorithm based on a Monte Carlo graph search and measures of importance sampling.
It is applicable to the optimization of gate order, both for discrete gates, as well as gates containing continuous variables.
arXiv Detail & Related papers (2023-07-14T14:01:25Z) - Automatic quantum circuit encoding of a given arbitrary quantum state [0.0]
We propose a quantum-classical hybrid algorithm to encode a given arbitrarily quantum state onto an optimal quantum circuit.
The proposed algorithm employs as an objective function the absolute value of fidelity $F = langle 0 vert hatmathcalCdagger vert Psi rangle$.
We experimentally demonstrate that a quantum circuit generated by the AQCE algorithm can indeed represent the original quantum state reasonably on a noisy real quantum device.
arXiv Detail & Related papers (2021-12-29T12:33:41Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2021-07-11T10:56:24Z) - Quantum Error Mitigation Relying on Permutation Filtering [84.66087478797475]
We propose a general framework termed as permutation filters, which includes the existing permutation-based methods as special cases.
We show that the proposed filter design algorithm always converges to the global optimum, and that the optimal filters can provide substantial improvements over the existing permutation-based methods.
arXiv Detail & Related papers (2021-07-03T16:07:30Z) - Filtering variational quantum algorithms for combinatorial optimization [0.0]
We introduce the Variational Quantum Eigensolver (F-VQE) which utilizes filtering operators to achieve faster and more reliable convergence to the optimal solution.
We also explore the use of causal cones to reduce the number of qubits required on a quantum computer.
arXiv Detail & Related papers (2021-06-18T11:07:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.