Achieving Low Complexity Neural Decoders via Iterative Pruning
- URL: http://arxiv.org/abs/2112.06044v1
- Date: Sat, 11 Dec 2021 18:33:08 GMT
- Title: Achieving Low Complexity Neural Decoders via Iterative Pruning
- Authors: Vikrant Malik, Rohan Ghosh and Mehul Motani
- Abstract summary: We consider iterative pruning approaches to prune weights in neural decoders.
Decoders with fewer number of weights can have lower latency and lower complexity.
This will make neural decoders more suitable for mobile and other edge devices with limited computational power.
- Score: 33.774970857450086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advancement of deep learning has led to the development of neural
decoders for low latency communications. However, neural decoders can be very
complex which can lead to increased computation and latency. We consider
iterative pruning approaches (such as the lottery ticket hypothesis algorithm)
to prune weights in neural decoders. Decoders with fewer number of weights can
have lower latency and lower complexity while retaining the accuracy of the
original model. This will make neural decoders more suitable for mobile and
other edge devices with limited computational power. We also propose semi-soft
decision decoding for neural decoders which can be used to improve the bit
error rate performance of the pruned network.
Related papers
- Verified Neural Compressed Sensing [58.98637799432153]
We develop the first (to the best of our knowledge) provably correct neural networks for a precise computational task.
We show that for modest problem dimensions (up to 50), we can train neural networks that provably recover a sparse vector from linear and binarized linear measurements.
We show that the complexity of the network can be adapted to the problem difficulty and solve problems where traditional compressed sensing methods are not known to provably work.
arXiv Detail & Related papers (2024-05-07T12:20:12Z) - Convolutional neural network based decoders for surface codes [0.0]
This work reports a study of decoders based on convolutional neural networks, tested on different code distances and noise models.
The results show that decoders based on convolutional neural networks have good performance and can adapt to different noise models.
arXiv Detail & Related papers (2023-12-06T14:07:31Z) - A Cryogenic Memristive Neural Decoder for Fault-tolerant Quantum Error Correction [0.0]
We design and analyze a neural decoder based on an in-memory crossbar (IMC) architecture.
We develop hardware-aware re-training methods to mitigate the fidelity loss.
This work provides a pathway to scalable, fast, and low-power cryogenic IMC hardware for integrated fault-tolerant QEC.
arXiv Detail & Related papers (2023-07-18T17:46:33Z) - Neural network decoder for near-term surface-code experiments [0.7100520098029438]
Neural-network decoders can achieve a lower logical error rate compared to conventional decoders.
These decoders require no prior information about the physical error rates, making them highly adaptable.
arXiv Detail & Related papers (2023-07-06T20:31:25Z) - Data-driven decoding of quantum error correcting codes using graph
neural networks [0.0]
We explore a model-free, data-driven, approach to decoding, using a graph neural network (GNN)
We show that the GNN-based decoder can outperform a matching decoder for circuit level noise on the surface code given only simulated data.
The results show that a purely data-driven approach to decoding may be a viable future option for practical quantum error correction.
arXiv Detail & Related papers (2023-07-03T17:25:45Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
arXiv Detail & Related papers (2023-04-14T19:46:39Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - Variable Bitrate Neural Fields [75.24672452527795]
We present a dictionary method for compressing feature grids, reducing their memory consumption by up to 100x.
We formulate the dictionary optimization as a vector-quantized auto-decoder problem which lets us learn end-to-end discrete neural representations in a space where no direct supervision is available.
arXiv Detail & Related papers (2022-06-15T17:58:34Z) - Adversarial Neural Networks for Error Correcting Codes [76.70040964453638]
We introduce a general framework to boost the performance and applicability of machine learning (ML) models.
We propose to combine ML decoders with a competing discriminator network that tries to distinguish between codewords and noisy words.
Our framework is game-theoretic, motivated by generative adversarial networks (GANs)
arXiv Detail & Related papers (2021-12-21T19:14:44Z) - Dynamic Neural Representational Decoders for High-Resolution Semantic
Segmentation [98.05643473345474]
We propose a novel decoder, termed dynamic neural representational decoder (NRD)
As each location on the encoder's output corresponds to a local patch of the semantic labels, in this work, we represent these local patches of labels with compact neural networks.
This neural representation enables our decoder to leverage the smoothness prior in the semantic label space, and thus makes our decoder more efficient.
arXiv Detail & Related papers (2021-07-30T04:50:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.