Improving Performance of Federated Learning based Medical Image Analysis
in Non-IID Settings using Image Augmentation
- URL: http://arxiv.org/abs/2112.06194v2
- Date: Tue, 14 Dec 2021 10:09:09 GMT
- Title: Improving Performance of Federated Learning based Medical Image Analysis
in Non-IID Settings using Image Augmentation
- Authors: Alper Emin Cetinkaya and Murat Akin and Seref Sagiroglu
- Abstract summary: Federated Learning (FL) is a suitable solution for making use of sensitive data belonging to patients, people, companies, or industries that are obligatory to work under rigid privacy constraints.
FL mainly or partially supports data privacy and security issues and provides an alternative to model problems facilitating multiple edge devices or organizations to contribute a training of a global model using a number of local data without having them.
This paper introduces a novel method dynamically balancing the data distributions of clients by augmenting images to address the non-IID data problem of FL.
- Score: 1.5469452301122177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a suitable solution for making use of sensitive
data belonging to patients, people, companies, or industries that are
obligatory to work under rigid privacy constraints. FL mainly or partially
supports data privacy and security issues and provides an alternative to model
problems facilitating multiple edge devices or organizations to contribute a
training of a global model using a number of local data without having them.
Non-IID data of FL caused from its distributed nature presents a significant
performance degradation and stabilization skews. This paper introduces a novel
method dynamically balancing the data distributions of clients by augmenting
images to address the non-IID data problem of FL. The introduced method
remarkably stabilizes the model training and improves the model's test accuracy
from 83.22% to 89.43% for multi-chest diseases detection of chest X-ray images
in highly non-IID FL setting. The results of IID, non-IID and non-IID with
proposed method federated trainings demonstrated that the proposed method might
help to encourage organizations or researchers in developing better systems to
get values from data with respect to data privacy not only for healthcare but
also other fields.
Related papers
- Future-Proofing Medical Imaging with Privacy-Preserving Federated Learning and Uncertainty Quantification: A Review [14.88874727211064]
AI could soon become routine in clinical practice for disease diagnosis, prognosis, treatment planning, and post-treatment surveillance.
Privacy concerns surrounding patient data present a major barrier to the widespread adoption of AI in medical imaging.
Federated Learning (FL) offers a solution that enables organizations to train AI models collaboratively without sharing sensitive data.
arXiv Detail & Related papers (2024-09-24T16:55:32Z) - Privacy Preserving Federated Learning in Medical Imaging with Uncertainty Estimation [15.63535423357971]
Machine learning (ML) and Artificial Intelligence (AI) have fueled remarkable advancements, particularly in healthcare. Within medical imaging, ML models hold the promise of improving disease diagnoses, treatment planning, and post-treatment monitoring.
Privacy concerns surrounding patient data hinder the assembly of large training datasets needed for developing and training accurate, robust, and generalizable models.
Federated Learning (FL) emerges as a compelling solution, enabling organizations to collaborate on ML model training by sharing model training information (gradients) rather than data (e.g., medical images)
arXiv Detail & Related papers (2024-06-18T17:35:52Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
Federated learning (FL) has been recognized as a rapidly growing area, where the model is trained over clients under the FL orchestration (PS)
In this paper, we propose a novel primal sparification algorithm for and guarantee non-smooth FL problems.
Its unique insightful properties and its analyses are also presented.
arXiv Detail & Related papers (2023-10-30T14:15:47Z) - Feature Matching Data Synthesis for Non-IID Federated Learning [7.740333805796447]
Federated learning (FL) trains neural networks on edge devices without collecting data at a central server.
This paper proposes a hard feature matching data synthesis (HFMDS) method to share auxiliary data besides local models.
For better privacy preservation, we propose a hard feature augmentation method to transfer real features towards the decision boundary.
arXiv Detail & Related papers (2023-08-09T07:49:39Z) - Label-Efficient Self-Supervised Federated Learning for Tackling Data
Heterogeneity in Medical Imaging [23.08596805950814]
We present a robust and label-efficient self-supervised FL framework for medical image analysis.
Specifically, we introduce a novel distributed self-supervised pre-training paradigm into the existing FL pipeline.
We show that our self-supervised FL algorithm generalizes well to out-of-distribution data and learns federated models more effectively in limited label scenarios.
arXiv Detail & Related papers (2022-05-17T18:33:43Z) - FEDIC: Federated Learning on Non-IID and Long-Tailed Data via Calibrated
Distillation [54.2658887073461]
Dealing with non-IID data is one of the most challenging problems for federated learning.
This paper studies the joint problem of non-IID and long-tailed data in federated learning and proposes a corresponding solution called Federated Ensemble Distillation with Imbalance (FEDIC)
FEDIC uses model ensemble to take advantage of the diversity of models trained on non-IID data.
arXiv Detail & Related papers (2022-04-30T06:17:36Z) - Towards Fast and Accurate Federated Learning with non-IID Data for
Cloud-Based IoT Applications [22.107854601448906]
Federated Learning (FL) is becoming popular in Internet of Things (IoT) design.
When the data collected by IoT devices are skewed in a non-independent and identically distributed (non-IID) manner, the accuracy of vanilla FL method cannot be guaranteed.
This paper proposes a novel data-based device grouping approach that can effectively reduce the disadvantages of weight divergence during the training of non-IID data.
arXiv Detail & Related papers (2022-01-29T06:49:08Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Differentially private federated deep learning for multi-site medical
image segmentation [56.30543374146002]
Collaborative machine learning techniques such as federated learning (FL) enable the training of models on effectively larger datasets without data transfer.
Recent initiatives have demonstrated that segmentation models trained with FL can achieve performance similar to locally trained models.
However, FL is not a fully privacy-preserving technique and privacy-centred attacks can disclose confidential patient data.
arXiv Detail & Related papers (2021-07-06T12:57:32Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
COVID-19 Disease due to the novel coronavirus has caused a shortage of medical resources.
Different data-driven deep learning models have been developed to mitigate the diagnosis of COVID-19.
The data itself is still scarce due to patient privacy concerns.
We propose a simple yet effective algorithm, named textbfFederated textbfL textbfon Medical datasets using textbfPartial Networks (FLOP)
arXiv Detail & Related papers (2021-02-10T01:56:58Z) - Inverse Distance Aggregation for Federated Learning with Non-IID Data [48.48922416867067]
Federated learning (FL) has been a promising approach in the field of medical imaging in recent years.
A critical problem in FL, specifically in medical scenarios is to have a more accurate shared model which is robust to noisy and out-of distribution clients.
We propose IDA, a novel adaptive weighting approach for clients based on meta-information which handles unbalanced and non-iid data.
arXiv Detail & Related papers (2020-08-17T23:20:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.