Feature Matching Data Synthesis for Non-IID Federated Learning
- URL: http://arxiv.org/abs/2308.04761v1
- Date: Wed, 9 Aug 2023 07:49:39 GMT
- Title: Feature Matching Data Synthesis for Non-IID Federated Learning
- Authors: Zijian Li, Yuchang Sun, Jiawei Shao, Yuyi Mao, Jessie Hui Wang, Jun
Zhang
- Abstract summary: Federated learning (FL) trains neural networks on edge devices without collecting data at a central server.
This paper proposes a hard feature matching data synthesis (HFMDS) method to share auxiliary data besides local models.
For better privacy preservation, we propose a hard feature augmentation method to transfer real features towards the decision boundary.
- Score: 7.740333805796447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) has emerged as a privacy-preserving paradigm that
trains neural networks on edge devices without collecting data at a central
server. However, FL encounters an inherent challenge in dealing with
non-independent and identically distributed (non-IID) data among devices. To
address this challenge, this paper proposes a hard feature matching data
synthesis (HFMDS) method to share auxiliary data besides local models.
Specifically, synthetic data are generated by learning the essential
class-relevant features of real samples and discarding the redundant features,
which helps to effectively tackle the non-IID issue. For better privacy
preservation, we propose a hard feature augmentation method to transfer real
features towards the decision boundary, with which the synthetic data not only
improve the model generalization but also erase the information of real
features. By integrating the proposed HFMDS method with FL, we present a novel
FL framework with data augmentation to relieve data heterogeneity. The
theoretical analysis highlights the effectiveness of our proposed data
synthesis method in solving the non-IID challenge. Simulation results further
demonstrate that our proposed HFMDS-FL algorithm outperforms the baselines in
terms of accuracy, privacy preservation, and computational cost on various
benchmark datasets.
Related papers
- Generative AI-Powered Plugin for Robust Federated Learning in Heterogeneous IoT Networks [3.536605202672355]
Federated learning enables edge devices to collaboratively train a global model while maintaining data privacy by keeping data localized.
We propose a novel plugin for federated optimization techniques that approximates Non-IID data distributions to IID through generative AI-enhanced data augmentation and balanced sampling strategy.
arXiv Detail & Related papers (2024-10-31T11:13:47Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
Federated Learning (FL) enables collaborative training of machine learning models on decentralized data.
Data across clients often differs significantly due to class imbalance, feature distribution skew, sample size imbalance, and other phenomena.
We propose a novel Bayesian PFL framework using bi-level optimization to tackle the data heterogeneity challenges.
arXiv Detail & Related papers (2024-05-29T11:28:06Z) - FLIGAN: Enhancing Federated Learning with Incomplete Data using GAN [1.5749416770494706]
Federated Learning (FL) provides a privacy-preserving mechanism for distributed training of machine learning models on networked devices.
We propose FLIGAN, a novel approach to address the issue of data incompleteness in FL.
Our methodology adheres to FL's privacy requirements by generating synthetic data in a federated manner without sharing the actual data in the process.
arXiv Detail & Related papers (2024-03-25T16:49:38Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
Federated learning (FL) has been recognized as a rapidly growing area, where the model is trained over clients under the FL orchestration (PS)
In this paper, we propose a novel primal sparification algorithm for and guarantee non-smooth FL problems.
Its unique insightful properties and its analyses are also presented.
arXiv Detail & Related papers (2023-10-30T14:15:47Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
We propose a generative AI-empowered federated learning to address these challenges by leveraging the idea of FIlling the MIssing (FIMI) portion of local data.
Experiment results demonstrate that FIMI can save up to 50% of the device-side energy to achieve the target global test accuracy.
arXiv Detail & Related papers (2023-10-21T12:07:04Z) - FedSym: Unleashing the Power of Entropy for Benchmarking the Algorithms
for Federated Learning [1.4656078321003647]
Federated learning (FL) is a decentralized machine learning approach where independent learners process data privately.
We study the currently popular data partitioning techniques and visualize their main disadvantages.
We propose a method that leverages entropy and symmetry to construct 'the most challenging' and controllable data distributions.
arXiv Detail & Related papers (2023-10-11T18:39:08Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
Federated Learning (FL) has emerged as an effective learning paradigm for distributed computation.
This work proposes a novel FL framework that requires only partial GAN model sharing.
Named as PS-FedGAN, this new framework enhances the GAN releasing and training mechanism to address heterogeneous data distributions.
arXiv Detail & Related papers (2023-05-19T05:39:40Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.