Multistate Transition Dynamics by Strong Time-Dependent Perturbation in
NISQ era
- URL: http://arxiv.org/abs/2112.06365v3
- Date: Sun, 24 Apr 2022 16:41:19 GMT
- Title: Multistate Transition Dynamics by Strong Time-Dependent Perturbation in
NISQ era
- Authors: Yulun Wang and Predrag S. Krstic
- Abstract summary: We develop a quantum computing scheme utilizing McLachlan variational principle in a hybrid quantum-classical algorithm.
Results for transition probabilities are obtained with accuracy better than 1%, as established by comparison to the benchmark data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a quantum computing scheme utilizing McLachlan variational
principle in a hybrid quantum-classical algorithm to accurately calculate the
transition dynamics of a closed quantum system with many excited states subject
to a strong time-dependent perturbation. A systematic approach for optimal
construction of a general N-state ansatz with unary N-qubit encoding is
refined. We also utilize qubit efficient encoding in McLachlan variational
quantum algorithm to reduce the number of qubits to log2 N, simultaneously
diminishing depths of the quantum circuits. The significant reduction of the
number of time steps is achieved by use of the second order marching method.
Instrumental in obtaining high accuracy are adaptations of the circuits to
include time-dependent global phase correction. We illustrated, tested and
optimized our quantum computing algorithm on a set of 16 bound hydrogenic
eigenstates exposed to a strong laser attosecond pulse. Results for transition
probabilities are obtained with accuracy better than 1%, as established by
comparison to the benchmark data. Use of interaction representation of the
Hamiltonian reduces the effect of both NISQ noise and sampling errors
accumulation while the quantum system evolves in time.
Related papers
- Adaptive variational quantum dynamics simulations with compressed circuits and fewer measurements [4.2643127089535104]
We show an improved version of the adaptive variational quantum dynamics simulation (AVQDS) method, which we call AVQDS(T)
The algorithm adaptively adds layers of disjoint unitary gates to the ansatz circuit so as to keep the McLachlan distance, a measure of the accuracy of the variational dynamics, below a fixed threshold.
We also show a method based on eigenvalue truncation to solve the linear equations of motion for the variational parameters with enhanced noise resilience.
arXiv Detail & Related papers (2024-08-13T02:56:43Z) - Performing Non-Local Phase Estimation with a Rydberg-Superconducting Qubit Hybrid [0.0]
We numerically simulate the execution of the distributed phase estimation algorithm in a proposed novel superconducting-resonator-atom hybrid system.
An entangling gate between two qubits is utilised in the distributed phase estimation algorithm, called an E2 gate.
The GRAPE algorithm showed very accurate engineering of Rydberg atom single and multi-qubit gates with fidelities higher than 90%.
arXiv Detail & Related papers (2024-02-22T16:11:48Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Algorithmic Shadow Spectroscopy [0.0]
We present a simulator-agnostic quantum algorithm for estimating energy gaps using very few circuit repetitions (shots) and no extra resources (ancilla qubits)
We demonstrate that our method is intuitively easy to use in practice, robust against gate noise, to a new type of algorithmic error mitigation technique, and uses orders of magnitude fewer number of shots than typical near-term quantum algorithms -- as low as 10 shots per timestep is sufficient.
arXiv Detail & Related papers (2022-12-21T14:23:48Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Mitigated barren plateaus in the time-nonlocal optimization of analog
quantum-algorithm protocols [0.0]
algorithmic classes such as variational quantum algorithms have been shown to suffer from barren plateaus.
We present an approach to quantum algorithm optimization that is based on trainable Fourier coefficients of Hamiltonian system parameters.
arXiv Detail & Related papers (2021-11-15T21:13:10Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Variational Simulation of Schwinger's Hamiltonian with Polarisation
Qubits [0.0]
We study the effect of noise on the quantum phase transition in the Schwinger model.
Experiments are built using a free space optical scheme to realize a pair of polarization qubits.
We find that despite the presence of noise one can detect the phase transition of the Schwinger Hamiltonian even for a two-qubit system.
arXiv Detail & Related papers (2020-09-21T00:39:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.