Detecting Out-of-Distribution Samples via Conditional Distribution
Entropy with Optimal Transport
- URL: http://arxiv.org/abs/2401.11726v1
- Date: Mon, 22 Jan 2024 07:07:32 GMT
- Title: Detecting Out-of-Distribution Samples via Conditional Distribution
Entropy with Optimal Transport
- Authors: Chuanwen Feng, Wenlong Chen, Ao Ke, Yilong Ren, Xike Xie, S.Kevin Zhou
- Abstract summary: We argue that empirical probability distributions that incorporate geometric information from both training samples and test inputs can be highly beneficial for OOD detection.
Within the framework of optimal transport, we propose a novel score function known as the emphconditional distribution entropy to quantify the uncertainty of a test input being an OOD sample.
- Score: 20.421338676377587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When deploying a trained machine learning model in the real world, it is
inevitable to receive inputs from out-of-distribution (OOD) sources. For
instance, in continual learning settings, it is common to encounter OOD samples
due to the non-stationarity of a domain. More generally, when we have access to
a set of test inputs, the existing rich line of OOD detection solutions,
especially the recent promise of distance-based methods, falls short in
effectively utilizing the distribution information from training samples and
test inputs. In this paper, we argue that empirical probability distributions
that incorporate geometric information from both training samples and test
inputs can be highly beneficial for OOD detection in the presence of test
inputs available. To address this, we propose to model OOD detection as a
discrete optimal transport problem. Within the framework of optimal transport,
we propose a novel score function known as the \emph{conditional distribution
entropy} to quantify the uncertainty of a test input being an OOD sample. Our
proposal inherits the merits of certain distance-based methods while
eliminating the reliance on distribution assumptions, a-prior knowledge, and
specific training mechanisms. Extensive experiments conducted on benchmark
datasets demonstrate that our method outperforms its competitors in OOD
detection.
Related papers
- EAT: Towards Long-Tailed Out-of-Distribution Detection [55.380390767978554]
This paper addresses the challenging task of long-tailed OOD detection.
The main difficulty lies in distinguishing OOD data from samples belonging to the tail classes.
We propose two simple ideas: (1) Expanding the in-distribution class space by introducing multiple abstention classes, and (2) Augmenting the context-limited tail classes by overlaying images onto the context-rich OOD data.
arXiv Detail & Related papers (2023-12-14T13:47:13Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
We propose a Non-Parametric Test Time textbfAdaptation framework for textbfDistribution textbfDetection (abbr)
abbr utilizes online test samples for model adaptation during testing, enhancing adaptability to changing data distributions.
We demonstrate the effectiveness of abbr through comprehensive experiments on multiple OOD detection benchmarks.
arXiv Detail & Related papers (2023-11-28T02:00:47Z) - Out-of-distribution Object Detection through Bayesian Uncertainty
Estimation [10.985423935142832]
We propose a novel, intuitive, and scalable probabilistic object detection method for OOD detection.
Our method is able to distinguish between in-distribution (ID) data and OOD data via weight parameter sampling from proposed Gaussian distributions.
We demonstrate that our Bayesian object detector can achieve satisfactory OOD identification performance by reducing the FPR95 score by up to 8.19% and increasing the AUROC score by up to 13.94% when trained on BDD100k and VOC datasets.
arXiv Detail & Related papers (2023-10-29T19:10:52Z) - Expecting The Unexpected: Towards Broad Out-Of-Distribution Detection [9.656342063882555]
We study five types of distribution shifts and evaluate the performance of recent OOD detection methods on each of them.
Our findings reveal that while these methods excel in detecting unknown classes, their performance is inconsistent when encountering other types of distribution shifts.
We present an ensemble approach that offers a more consistent and comprehensive solution for broad OOD detection.
arXiv Detail & Related papers (2023-08-22T14:52:44Z) - Pseudo-OOD training for robust language models [78.15712542481859]
OOD detection is a key component of a reliable machine-learning model for any industry-scale application.
We propose POORE - POsthoc pseudo-Ood REgularization, that generates pseudo-OOD samples using in-distribution (IND) data.
We extensively evaluate our framework on three real-world dialogue systems, achieving new state-of-the-art in OOD detection.
arXiv Detail & Related papers (2022-10-17T14:32:02Z) - Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD
Training Data Estimate a Combination of the Same Core Quantities [104.02531442035483]
The goal of this paper is to recognize common objectives as well as to identify the implicit scoring functions of different OOD detection methods.
We show that binary discrimination between in- and (different) out-distributions is equivalent to several distinct formulations of the OOD detection problem.
We also show that the confidence loss which is used by Outlier Exposure has an implicit scoring function which differs in a non-trivial fashion from the theoretically optimal scoring function.
arXiv Detail & Related papers (2022-06-20T16:32:49Z) - WOOD: Wasserstein-based Out-of-Distribution Detection [6.163329453024915]
Training data for deep-neural-network-based classifiers are usually assumed to be sampled from the same distribution.
When part of the test samples are drawn from a distribution that is far away from that of the training samples, the trained neural network has a tendency to make high confidence predictions for these OOD samples.
We propose a Wasserstein-based out-of-distribution detection (WOOD) method to overcome these challenges.
arXiv Detail & Related papers (2021-12-13T02:35:15Z) - Statistical Testing for Efficient Out of Distribution Detection in Deep
Neural Networks [26.0303701309125]
This paper frames the Out Of Distribution (OOD) detection problem in Deep Neural Networks as a statistical hypothesis testing problem.
We build on this framework to suggest a novel OOD procedure based on low-order statistics.
Our method achieves comparable or better than state-of-the-art results on well-accepted OOD benchmarks without retraining the network parameters.
arXiv Detail & Related papers (2021-02-25T16:14:47Z) - Label Smoothed Embedding Hypothesis for Out-of-Distribution Detection [72.35532598131176]
We propose an unsupervised method to detect OOD samples using a $k$-NN density estimate.
We leverage a recent insight about label smoothing, which we call the emphLabel Smoothed Embedding Hypothesis
We show that our proposal outperforms many OOD baselines and also provide new finite-sample high-probability statistical results.
arXiv Detail & Related papers (2021-02-09T21:04:44Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
We show that current out-of-distribution (OOD) detection algorithms for neural networks produce unsatisfactory results in a variety of OOD detection scenarios.
This paper studies how such "hard" OOD scenarios can benefit from adjusting the detection method after observing a batch of the test data.
We propose a novel method that uses an artificial labeling scheme for the test data and regularization to obtain ensembles of models that produce contradictory predictions only on the OOD samples in a test batch.
arXiv Detail & Related papers (2020-12-10T16:55:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.