Plurality and Quantification in Graph Representation of Meaning
- URL: http://arxiv.org/abs/2112.06448v1
- Date: Mon, 13 Dec 2021 07:04:41 GMT
- Title: Plurality and Quantification in Graph Representation of Meaning
- Authors: Yu Cao
- Abstract summary: Our graph language covers the essentials of natural language semantics using only monadic second-order variables.
We present a unification-based mechanism for constructing semantic graphs at a simple syntax-semantics interface.
The present graph formalism is applied to linguistic issues in distributive predication, cross-categorial conjunction, and scope permutation of quantificational expressions.
- Score: 4.82512586077023
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this thesis we present a semantic representation formalism based on
directed graphs and explore its linguistic adequacy and explanatory benefits in
the semantics of plurality and quantification. Our graph language covers the
essentials of natural language semantics using only monadic second-order
variables. We define its model-theoretical interpretation in terms of graph
traversal, where the relative scope of variables arises from their order of
valuation. We present a unification-based mechanism for constructing semantic
graphs at a simple syntax-semantics interface, where syntax as a partition
function on discourse referents is implemented with categorial grammars by
establishing a partly deterministic relation between semantics and syntactic
distribution. This mechanism is automated to facilitate future exploration. The
present graph formalism is applied to linguistic issues in distributive
predication, cross-categorial conjunction, and scope permutation of
quantificational expressions, including the exceptional scoping behaviors of
indefinites.
Related papers
- How well do distributed representations convey contextual lexical semantics: a Thesis Proposal [3.3585951129432323]
In this thesis, we examine the efficacy of distributed representations from modern neural networks in encoding lexical meaning.
We identify four sources of ambiguity based on the relatedness and similarity of meanings influenced by context.
We then aim to evaluate these sources by collecting or constructing multilingual datasets, leveraging various language models, and employing linguistic analysis tools.
arXiv Detail & Related papers (2024-06-02T14:08:51Z) - Dynamic Syntax Mapping: A New Approach to Unsupervised Syntax Parsing [0.0]
This study investigates the premise that language models, specifically their attention distributions, can encapsulate syntactic dependencies.
We introduce Dynamic Syntax Mapping (DSM), an innovative approach for the induction of these structures.
Our findings reveal that the use of an increasing array of substitutions notably enhances parsing precision on natural language data.
arXiv Detail & Related papers (2023-12-18T10:34:29Z) - Variational Cross-Graph Reasoning and Adaptive Structured Semantics
Learning for Compositional Temporal Grounding [143.5927158318524]
Temporal grounding is the task of locating a specific segment from an untrimmed video according to a query sentence.
We introduce a new Compositional Temporal Grounding task and construct two new dataset splits.
We argue that the inherent structured semantics inside the videos and language is the crucial factor to achieve compositional generalization.
arXiv Detail & Related papers (2023-01-22T08:02:23Z) - Universality and diversity in word patterns [0.0]
We present an analysis of lexical statistical connections for eleven major languages.
We find that the diverse manners that languages utilize to express word relations give rise to unique pattern distributions.
arXiv Detail & Related papers (2022-08-23T20:03:27Z) - Multilingual Extraction and Categorization of Lexical Collocations with
Graph-aware Transformers [86.64972552583941]
We put forward a sequence tagging BERT-based model enhanced with a graph-aware transformer architecture, which we evaluate on the task of collocation recognition in context.
Our results suggest that explicitly encoding syntactic dependencies in the model architecture is helpful, and provide insights on differences in collocation typification in English, Spanish and French.
arXiv Detail & Related papers (2022-05-23T16:47:37Z) - Graph Adaptive Semantic Transfer for Cross-domain Sentiment
Classification [68.06496970320595]
Cross-domain sentiment classification (CDSC) aims to use the transferable semantics learned from the source domain to predict the sentiment of reviews in the unlabeled target domain.
We present Graph Adaptive Semantic Transfer (GAST) model, an adaptive syntactic graph embedding method that is able to learn domain-invariant semantics from both word sequences and syntactic graphs.
arXiv Detail & Related papers (2022-05-18T07:47:01Z) - Oracle Linguistic Graphs Complement a Pretrained Transformer Language
Model: A Cross-formalism Comparison [13.31232311913236]
We examine the extent to which, in principle, linguistic graph representations can complement and improve neural language modeling.
We find that, overall, semantic constituency structures are most useful to language modeling performance.
arXiv Detail & Related papers (2021-12-15T04:29:02Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
We show that, unlike syntax, semantics is not brought to the surface by today's pretrained models.
We then use convolutional graph encoders to explicitly incorporate semantic parses into task-specific finetuning.
arXiv Detail & Related papers (2020-12-10T01:27:24Z) - Compositional Generalization via Semantic Tagging [81.24269148865555]
We propose a new decoding framework that preserves the expressivity and generality of sequence-to-sequence models.
We show that the proposed approach consistently improves compositional generalization across model architectures, domains, and semantic formalisms.
arXiv Detail & Related papers (2020-10-22T15:55:15Z) - Unsupervised Distillation of Syntactic Information from Contextualized
Word Representations [62.230491683411536]
We tackle the task of unsupervised disentanglement between semantics and structure in neural language representations.
To this end, we automatically generate groups of sentences which are structurally similar but semantically different.
We demonstrate that our transformation clusters vectors in space by structural properties, rather than by lexical semantics.
arXiv Detail & Related papers (2020-10-11T15:13:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.