論文の概要: Lifelong Hyper-Policy Optimization with Multiple Importance Sampling
Regularization
- arxiv url: http://arxiv.org/abs/2112.06625v1
- Date: Mon, 13 Dec 2021 13:09:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-14 18:23:23.838953
- Title: Lifelong Hyper-Policy Optimization with Multiple Importance Sampling
Regularization
- Title(参考訳): 多値サンプリング規則化による生涯超ポリシング最適化
- Authors: Pierre Liotet, Francesco Vidaich, Alberto Maria Metelli, Marcello
Restelli
- Abstract要約: 本稿では,その時にクエリされるポリシーのパラメータを出力する,入力が時間である超政治を学習する手法を提案する。
この超政治は、推定される将来のパフォーマンスを最大化し、重要サンプリングによって過去のデータを効率的に再利用するように訓練されている。
実環境において、最先端のアルゴリズムと比較して、我々のアプローチを実証的に検証する。
- 参考スコア(独自算出の注目度): 40.17392342387002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning in a lifelong setting, where the dynamics continually evolve, is a
hard challenge for current reinforcement learning algorithms. Yet this would be
a much needed feature for practical applications. In this paper, we propose an
approach which learns a hyper-policy, whose input is time, that outputs the
parameters of the policy to be queried at that time. This hyper-policy is
trained to maximize the estimated future performance, efficiently reusing past
data by means of importance sampling, at the cost of introducing a controlled
bias. We combine the future performance estimate with the past performance to
mitigate catastrophic forgetting. To avoid overfitting the collected data, we
derive a differentiable variance bound that we embed as a penalization term.
Finally, we empirically validate our approach, in comparison with
state-of-the-art algorithms, on realistic environments, including water
resource management and trading.
- Abstract(参考訳): ダイナミクスが継続的に進化する生涯学習は、現在の強化学習アルゴリズムにとって難しい課題である。
しかし、これは実用的なアプリケーションに必要な機能である。
本稿では,その時にクエリされるポリシーのパラメータを出力する,入力が時間である超政治を学習する手法を提案する。
この超政治は、予測される将来のパフォーマンスを最大化するために訓練され、重要サンプリングによって過去のデータを効率的に再利用する。
将来のパフォーマンス推定と過去のパフォーマンスを組み合わせることで、破滅的な忘れを緩和します。
収集したデータが過度に収まるのを避けるために、ペナリゼーション項として埋め込む微分可能な分散を導出する。
最後に,水資源管理やトレーディングを含む現実的な環境において,最先端のアルゴリズムと比較し,実証的に検証した。
関連論文リスト
- Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
政策勾配法(PG法)は連続強化学習(RL法)問題に対処する手法として成功している。
一般的には、収束(ハイパー)政治は、決定論的バージョンをデプロイするためにのみ学習される。
本稿では,サンプルの複雑性とデプロイされた決定論的ポリシのパフォーマンスのトレードオフを最適化するために,学習に使用する探索レベルの調整方法を示す。
論文 参考訳(メタデータ) (2024-05-03T16:45:15Z) - Pessimistic Causal Reinforcement Learning with Mediators for Confounded Offline Data [17.991833729722288]
我々は新しいポリシー学習アルゴリズム PESsimistic CAusal Learning (PESCAL) を提案する。
我々のキーとなる観察は、システム力学における作用の効果を媒介する補助変数を組み込むことで、Q-関数の代わりに媒介物分布関数の下位境界を学習することは十分であるということである。
提案するアルゴリズムの理論的保証とシミュレーションによる有効性の実証、および主要な配車プラットフォームからのオフラインデータセットを利用した実世界の実験を提供する。
論文 参考訳(メタデータ) (2024-03-18T14:51:19Z) - Bi-Level Offline Policy Optimization with Limited Exploration [1.8130068086063336]
我々は、固定された事前コンパイルされたデータセットに基づいて良いポリシーを学習しようとするオフライン強化学習(RL)について研究する。
ポリシー(上層)と値関数(下層)の階層的相互作用をモデル化する2レベル構造化ポリシー最適化アルゴリズムを提案する。
我々は、オフラインRLのための合成、ベンチマーク、実世界のデータセットを混合して評価し、最先端の手法と競合することを示す。
論文 参考訳(メタデータ) (2023-10-10T02:45:50Z) - Let Offline RL Flow: Training Conservative Agents in the Latent Space of
Normalizing Flows [58.762959061522736]
オフライン強化学習は、追加の環境相互作用なしに、事前に記録された、固定されたデータセット上でポリシーをトレーニングすることを目的としている。
我々は、最近、潜在行動空間における学習ポリシーを基礎として、生成モデルの構築に正規化フローの特別な形式を用いる。
提案手法が最近提案したアルゴリズムより優れていることを示すため,様々な移動タスクとナビゲーションタスクについて評価を行った。
論文 参考訳(メタデータ) (2022-11-20T21:57:10Z) - Latent-Variable Advantage-Weighted Policy Optimization for Offline RL [70.01851346635637]
オフラインの強化学習メソッドは、新しいトランジションを環境に問い合わせる必要なしに、事前にコンパイルされたデータセットから学習ポリシーを保証します。
実際には、オフラインデータセットは、しばしば異種、すなわち様々なシナリオで収集される。
より広範な政策分布を表現できる潜在変数ポリシーを活用することを提案する。
提案手法は,次回のオフライン強化学習法の性能を,異種データセット上で49%向上させる。
論文 参考訳(メタデータ) (2022-03-16T21:17:03Z) - Batch Reinforcement Learning with a Nonparametric Off-Policy Policy
Gradient [34.16700176918835]
オフライン強化学習は、より良いデータ効率を約束する。
現在の非政治政策勾配法は、高いバイアスまたは高い分散に悩まされ、しばしば信頼できない見積もりを提供する。
閉形式で解ける非パラメトリックベルマン方程式を提案する。
論文 参考訳(メタデータ) (2020-10-27T13:40:06Z) - Optimizing for the Future in Non-Stationary MDPs [52.373873622008944]
本稿では,今後の性能予測を最大化するポリシ勾配アルゴリズムを提案する。
我々のアルゴリズムであるPrognosticatorは2つのオンライン適応手法よりも非定常性に頑健であることを示す。
論文 参考訳(メタデータ) (2020-05-17T03:41:19Z) - DisCor: Corrective Feedback in Reinforcement Learning via Distribution
Correction [96.90215318875859]
ブートストラップに基づくQ-ラーニングアルゴリズムは必ずしも修正フィードバックの恩恵を受けないことを示す。
本稿では,この最適分布に対する近似を計算し,トレーニングに使用する遷移の重み付けに使用する新しいアルゴリズムであるDisCorを提案する。
論文 参考訳(メタデータ) (2020-03-16T16:18:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。